Arnaud Brignol , Anita Paas , Luis Sotelo-Castro , David St-Onge , Giovanni Beltrame , Emily B.J. Coffey
{"title":"Overcoming boundaries: Interdisciplinary challenges and opportunities in cognitive neuroscience","authors":"Arnaud Brignol , Anita Paas , Luis Sotelo-Castro , David St-Onge , Giovanni Beltrame , Emily B.J. Coffey","doi":"10.1016/j.neuropsychologia.2024.108903","DOIUrl":null,"url":null,"abstract":"<div><p>Cognitive neuroscience has considerable untapped potential to translate our understanding of brain function into applications that maintain, restore, or enhance human cognition. Complex, real-world phenomena encountered in daily life, professional contexts, and in the arts, can also be a rich source of information for better understanding cognition, which in turn can lead to advances in knowledge and health outcomes. Interdisciplinary work is needed for these bi-directional benefits to be realized. Our cognitive neuroscience team has been collaborating on several interdisciplinary projects: hardware and software development for brain stimulation, measuring human operator state in safety-critical robotics environments, and exploring emotional regulation in actors who perform traumatic narratives. Our approach is to study research questions of mutual interest in the contexts of domain-specific applications, using (and sometimes improving) the experimental tools and techniques of cognitive neuroscience. These interdisciplinary attempts are described as case studies in the present work to illustrate non-trivial challenges that come from working across traditional disciplinary boundaries. We reflect on how obstacles to interdisciplinary work can be overcome, with the goals of enriching our understanding of human cognition and amplifying the positive effects cognitive neuroscientists have on society and innovation.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028393224001180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive neuroscience has considerable untapped potential to translate our understanding of brain function into applications that maintain, restore, or enhance human cognition. Complex, real-world phenomena encountered in daily life, professional contexts, and in the arts, can also be a rich source of information for better understanding cognition, which in turn can lead to advances in knowledge and health outcomes. Interdisciplinary work is needed for these bi-directional benefits to be realized. Our cognitive neuroscience team has been collaborating on several interdisciplinary projects: hardware and software development for brain stimulation, measuring human operator state in safety-critical robotics environments, and exploring emotional regulation in actors who perform traumatic narratives. Our approach is to study research questions of mutual interest in the contexts of domain-specific applications, using (and sometimes improving) the experimental tools and techniques of cognitive neuroscience. These interdisciplinary attempts are described as case studies in the present work to illustrate non-trivial challenges that come from working across traditional disciplinary boundaries. We reflect on how obstacles to interdisciplinary work can be overcome, with the goals of enriching our understanding of human cognition and amplifying the positive effects cognitive neuroscientists have on society and innovation.