Wenlong Jin, Chi-Yuan Yang, Riccardo Pau, Qingqing Wang, Eelco K. Tekelenburg, Han-Yan Wu, Ziang Wu, Sang Young Jeong, Federico Pitzalis, Tiefeng Liu, Qiao He, Qifan Li, Jun-Da Huang, Renee Kroon, Martin Heeney, Han Young Woo, Andrea Mura, Alessandro Motta, Antonio Facchetti, Mats Fahlman, Maria Antonietta Loi, Simone Fabiano
{"title":"Photocatalytic doping of organic semiconductors","authors":"Wenlong Jin, Chi-Yuan Yang, Riccardo Pau, Qingqing Wang, Eelco K. Tekelenburg, Han-Yan Wu, Ziang Wu, Sang Young Jeong, Federico Pitzalis, Tiefeng Liu, Qiao He, Qifan Li, Jun-Da Huang, Renee Kroon, Martin Heeney, Han Young Woo, Andrea Mura, Alessandro Motta, Antonio Facchetti, Mats Fahlman, Maria Antonietta Loi, Simone Fabiano","doi":"10.1038/s41586-024-07400-5","DOIUrl":null,"url":null,"abstract":"Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1–3 and ultimately enhances device performance4–7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8–10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm–1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices. A previously undescribed photocatalytic approach enables the effective p-type and n-type doping of organic semiconductors at room temperature using only widely available weak dopants such as oxygen and triethylamine.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"630 8015","pages":"96-101"},"PeriodicalIF":50.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-07400-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1–3 and ultimately enhances device performance4–7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8–10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm–1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices. A previously undescribed photocatalytic approach enables the effective p-type and n-type doping of organic semiconductors at room temperature using only widely available weak dopants such as oxygen and triethylamine.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.