Comprehensive rheological analysis of structurally related acetan-like heteroexopolysaccharides from two Kozakia baliensis strains in surfactants and galactomannan blends
{"title":"Comprehensive rheological analysis of structurally related acetan-like heteroexopolysaccharides from two Kozakia baliensis strains in surfactants and galactomannan blends","authors":"Julia Schilling, Jochen Schmid","doi":"10.1016/j.nbt.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Natural biopolymers become increasingly attractive as bio-based alternatives to petrol-based rheological modifiers, especially in personal care applications. However, many polysaccharides exhibit undesired properties in cosmetic applications such as limited viscosifying characteristics, unpleasant sensory properties, or incompatibility with certain formulation compounds. Here, a comprehensive rheological analysis of non-decorated acetan-like heteroexopolysaccharides derived from two <em>Kozakia baliensis</em> strains was performed in selected surfactant formulations. The results were compared to native xanthan gum and a genetically engineered xanthan variant, Xan∆<em>gumFGL</em>, which lacks any acetyl- and pyruvyl moieties and whose rheological properties are unaffected by saline environments. All four polysaccharides displayed a highly similar rheological performance in the non-ionic surfactant lauryl glucoside, while the rheological properties differed in amphoteric and anionic surfactants cocamidopropyl betaine and sodium laureth sulfate due to minor changes in side chain composition. Polysaccharide precipitation was observed in the presence of the cationic surfactant. Nevertheless, the native heteroexopolysaccharide derived from <em>K. baliensis</em> LMG 27018 shows significant potential as a salt-independent rheological modifier compared to the genetically engineered Xan∆<em>gumFGL</em> variant. In addition, blends of heteroexopolysaccharides from <em>K. baliensis</em> and several galactomannans displayed synergistic effects which were comparable to native xanthan gum-galactomannan blends. This study shows that heteroexopolysaccharides of <em>K. baliensis</em> are capable of further extending the portfolio of bio-based rheological modifiers.</p></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":"82 ","pages":"Pages 75-84"},"PeriodicalIF":4.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1871678424000177/pdfft?md5=43daa64bf5b6e893faf2f82fc9f11b40&pid=1-s2.0-S1871678424000177-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678424000177","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Natural biopolymers become increasingly attractive as bio-based alternatives to petrol-based rheological modifiers, especially in personal care applications. However, many polysaccharides exhibit undesired properties in cosmetic applications such as limited viscosifying characteristics, unpleasant sensory properties, or incompatibility with certain formulation compounds. Here, a comprehensive rheological analysis of non-decorated acetan-like heteroexopolysaccharides derived from two Kozakia baliensis strains was performed in selected surfactant formulations. The results were compared to native xanthan gum and a genetically engineered xanthan variant, Xan∆gumFGL, which lacks any acetyl- and pyruvyl moieties and whose rheological properties are unaffected by saline environments. All four polysaccharides displayed a highly similar rheological performance in the non-ionic surfactant lauryl glucoside, while the rheological properties differed in amphoteric and anionic surfactants cocamidopropyl betaine and sodium laureth sulfate due to minor changes in side chain composition. Polysaccharide precipitation was observed in the presence of the cationic surfactant. Nevertheless, the native heteroexopolysaccharide derived from K. baliensis LMG 27018 shows significant potential as a salt-independent rheological modifier compared to the genetically engineered Xan∆gumFGL variant. In addition, blends of heteroexopolysaccharides from K. baliensis and several galactomannans displayed synergistic effects which were comparable to native xanthan gum-galactomannan blends. This study shows that heteroexopolysaccharides of K. baliensis are capable of further extending the portfolio of bio-based rheological modifiers.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.