Anti-Leishmania activity and molecular docking of unusual flavonoids-rich fraction from Arrabidaea brachypoda (Bignoniaceae)

IF 1.4 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Monica A. das Neves , Jessyane R. do Nascimento , Vera Lucia Maciel-Silva , Alberto M. dos Santos , Jaldyr de Jesus G.V. Junior , Ana Jessica S. Coelho , Mayara Ingrid S. Lima , Silma Regina F. Pereira , Cláudia Q. da Rocha
{"title":"Anti-Leishmania activity and molecular docking of unusual flavonoids-rich fraction from Arrabidaea brachypoda (Bignoniaceae)","authors":"Monica A. das Neves ,&nbsp;Jessyane R. do Nascimento ,&nbsp;Vera Lucia Maciel-Silva ,&nbsp;Alberto M. dos Santos ,&nbsp;Jaldyr de Jesus G.V. Junior ,&nbsp;Ana Jessica S. Coelho ,&nbsp;Mayara Ingrid S. Lima ,&nbsp;Silma Regina F. Pereira ,&nbsp;Cláudia Q. da Rocha","doi":"10.1016/j.molbiopara.2024.111629","DOIUrl":null,"url":null,"abstract":"<div><p>Leishmaniases comprise a group of infectious parasitic diseases caused by various species of <em>Leishmania</em> and are considered a significant public health problem worldwide. Only a few medications, including miltefosine, amphotericin B, and meglumine antimonate, are used in current therapy. These medications are associated with severe side effects, low efficacy, high cost, and the need for hospital support. Additionally, there have been occurrences of drug resistance. Additionally, only a limited number of drugs, such as meglumine antimonate, amphotericin B, and miltefosine, are available, all of which are associated with severe side effects. In this context, the need for new effective drugs with fewer adverse effects is evident. Therefore, this study investigated the anti-<em>Leishmania</em> activity of a dichloromethane fraction (DCMF) extracted from <em>Arrabidaea brachypoda</em> roots. This fraction inhibited the viability of <em>L. infantum</em>, <em>L. braziliensis</em>, and <em>L. Mexicana</em> promastigotes, with IC<sub>50</sub> values of 10.13, 11.44, and 11.16 µg/mL, respectively, and against <em>L. infantum</em> amastigotes (IC<sub>50</sub> = 4.81 µg/mL). Moreover, the DCMF exhibited moderate cytotoxicity (CC<sub>50</sub> = 25.15) towards RAW264.7 macrophages, with a selectivity index (SI) of 5.2. Notably, the DCMF caused damage to the macrophage genome only at 40 µg/mL, which is greater than the IC<sub>50</sub> found for all <em>Leishmania</em> species. The results suggest that DCMF demonstrates similar antileishmanial effectiveness to isolated brachydin B, without causing genotoxic effects on mammalian cells. This finding is crucial because the isolation of the compounds relies on several steps and is very costly while obtaining the DCMF fraction is a simple and cost-effective process. Furthermore, In addition, the potential mechanisms of action of brachydins were also investigated. The computational analysis indicates that brachydin compounds bind to the Triosephosphate isomerase (TIM) enzyme via two main mechanisms: destabilizing the interface between the homodimers and interacting with catalytic residues situated at the site of binding. Based on all the results, DCMF exhibits promise as a therapeutic agent for leishmaniasis due to its significantly reduced toxicity in comparison to the adverse effects associated with current reference treatments.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685124000227","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leishmaniases comprise a group of infectious parasitic diseases caused by various species of Leishmania and are considered a significant public health problem worldwide. Only a few medications, including miltefosine, amphotericin B, and meglumine antimonate, are used in current therapy. These medications are associated with severe side effects, low efficacy, high cost, and the need for hospital support. Additionally, there have been occurrences of drug resistance. Additionally, only a limited number of drugs, such as meglumine antimonate, amphotericin B, and miltefosine, are available, all of which are associated with severe side effects. In this context, the need for new effective drugs with fewer adverse effects is evident. Therefore, this study investigated the anti-Leishmania activity of a dichloromethane fraction (DCMF) extracted from Arrabidaea brachypoda roots. This fraction inhibited the viability of L. infantum, L. braziliensis, and L. Mexicana promastigotes, with IC50 values of 10.13, 11.44, and 11.16 µg/mL, respectively, and against L. infantum amastigotes (IC50 = 4.81 µg/mL). Moreover, the DCMF exhibited moderate cytotoxicity (CC50 = 25.15) towards RAW264.7 macrophages, with a selectivity index (SI) of 5.2. Notably, the DCMF caused damage to the macrophage genome only at 40 µg/mL, which is greater than the IC50 found for all Leishmania species. The results suggest that DCMF demonstrates similar antileishmanial effectiveness to isolated brachydin B, without causing genotoxic effects on mammalian cells. This finding is crucial because the isolation of the compounds relies on several steps and is very costly while obtaining the DCMF fraction is a simple and cost-effective process. Furthermore, In addition, the potential mechanisms of action of brachydins were also investigated. The computational analysis indicates that brachydin compounds bind to the Triosephosphate isomerase (TIM) enzyme via two main mechanisms: destabilizing the interface between the homodimers and interacting with catalytic residues situated at the site of binding. Based on all the results, DCMF exhibits promise as a therapeutic agent for leishmaniasis due to its significantly reduced toxicity in comparison to the adverse effects associated with current reference treatments.

从葶苈中提取的富含黄酮类化合物的抗利什曼病菌活性及分子对接研究
利什曼病是由不同种类的利什曼原虫引起的一组传染性寄生虫病,被认为是全球重大的公共卫生问题。目前的疗法面临着严重的局限性,包括疗效低、成本高、给药途径需要医院支持且已出现抗药性。此外,目前只有有限的几种药物,如抗锑酸甲克鲁明、两性霉素 B 和米替福新,所有这些药物都有严重的副作用。在这种情况下,显然需要新的有效且不良反应较少的药物。因此,本研究调查了从箭毒树根中提取的二氯甲烷馏分(DCMF)的抗利什曼原虫活性。该馏分可抑制 L.infantum、L.braziliensis 和 L. Mexicana 原虫的活力,其 IC50 值分别为 10.13、11.44 和 11.16µg/mL,并可抑制 L. infantum 母细胞(IC50 = 4.81µg/mL)。此外,DCMF 对 RAW264.7 巨噬细胞具有中等程度的细胞毒性(CC50 = 25.15),选择性指数(SI)为 5.2。值得注意的是,DCMF 只有在 40µg/mL 时才会对巨噬细胞基因组造成破坏,这高于所有利什曼病菌的 IC50。此外,还研究了布拉克丁的潜在作用机制。结果表明,DCMF 与分离出的 brachydin B 具有类似的抗利什曼病效果,但不会对哺乳动物细胞造成基因毒性影响。这一发现至关重要,因为化合物的分离需要多个步骤,成本非常高昂,而获得 DCMF 部分则是一个简单而经济有效的过程。此外,计算分析表明,布拉奇丁化合物通过两种主要机制与磷酸三糖异构酶(TIM)结合:破坏同源二聚体之间界面的稳定性以及与位于结合部位的催化残基相互作用。根据所有研究结果,DCMF有望成为利什曼病的治疗药物,因为与目前的参考疗法相比,它的毒性大大降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
51
审稿时长
63 days
期刊介绍: The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are: • the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances • intermediary metabolism and bioenergetics • drug target characterization and the mode of action of antiparasitic drugs • molecular and biochemical aspects of membrane structure and function • host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules. • analysis of genes and genome structure, function and expression • analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance. • parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules • parasite programmed cell death, development, and cell division at the molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信