Prediction of individual lifetime cardiovascular risk and potential treatment benefit: development and recalibration of the LIFE-CVD2 model to four European risk regions.

IF 8.4 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Steven H J Hageman, Stephen Kaptoge, Tamar I de Vries, Wentian Lu, Janet M Kist, Hendrikus J A van Os, Mattijs E Numans, Kristi Läll, Martin Bobak, Hynek Pikhart, Ruzena Kubinova, Sofia Malyutina, Andrzej Pająk, Abdonas Tamosiunas, Raimund Erbel, Andreas Stang, Börge Schmidt, Sara Schramm, Thomas R Bolton, Sarah Spackman, Stephan J L Bakker, Michael Blaha, Jolanda M A Boer, Amélie Bonnefond, Hermann Brenner, Eric J Brunner, Nancy R Cook, Karina Davidson, Elaine Dennison, Chiara Donfrancesco, Marcus Dörr, James S Floyd, Ian Ford, Michael Fu, Ron T Gansevoort, Simona Giampaoli, Richard F Gillum, Agustín Gómez-de-la-Cámara, Lise Lund Håheim, Per-Olof Hansson, Peter Harms, Steve E Humphries, M Kamran Ikram, J Wouter Jukema, Maryam Kavousi, Stefan Kiechl, Anna Kucharska-Newton, David Lora Pablos, Kunihiro Matsushita, Haakon E Meyer, Karel G M Moons, Martin Bødtker Mortensen, Mirthe Muilwijk, Børge G Nordestgaard, Chris Packard, Luigi Pamieri, Demosthenes Panagiotakos, Annette Peters, Louis Potier, Rui Providencia, Bruce M Psaty, Paul M Ridker, Beatriz Rodriguez, Annika Rosengren, Naveed Sattar, Ben Schöttker, Joseph E Schwartz, Steven Shea, Martin J Shipley, Reecha Sofat, Barbara Thorand, W M Monique Verschuren, Henry Völzke, Nicholas J Wareham, Leo Westbury, Peter Willeit, Bin Zhou, John Danesh, Frank L J Visseren, Emanuele Di Angelantonio, Lisa Pennells, Jannick A N Dorresteijn
{"title":"Prediction of individual lifetime cardiovascular risk and potential treatment benefit: development and recalibration of the LIFE-CVD2 model to four European risk regions.","authors":"Steven H J Hageman, Stephen Kaptoge, Tamar I de Vries, Wentian Lu, Janet M Kist, Hendrikus J A van Os, Mattijs E Numans, Kristi Läll, Martin Bobak, Hynek Pikhart, Ruzena Kubinova, Sofia Malyutina, Andrzej Pająk, Abdonas Tamosiunas, Raimund Erbel, Andreas Stang, Börge Schmidt, Sara Schramm, Thomas R Bolton, Sarah Spackman, Stephan J L Bakker, Michael Blaha, Jolanda M A Boer, Amélie Bonnefond, Hermann Brenner, Eric J Brunner, Nancy R Cook, Karina Davidson, Elaine Dennison, Chiara Donfrancesco, Marcus Dörr, James S Floyd, Ian Ford, Michael Fu, Ron T Gansevoort, Simona Giampaoli, Richard F Gillum, Agustín Gómez-de-la-Cámara, Lise Lund Håheim, Per-Olof Hansson, Peter Harms, Steve E Humphries, M Kamran Ikram, J Wouter Jukema, Maryam Kavousi, Stefan Kiechl, Anna Kucharska-Newton, David Lora Pablos, Kunihiro Matsushita, Haakon E Meyer, Karel G M Moons, Martin Bødtker Mortensen, Mirthe Muilwijk, Børge G Nordestgaard, Chris Packard, Luigi Pamieri, Demosthenes Panagiotakos, Annette Peters, Louis Potier, Rui Providencia, Bruce M Psaty, Paul M Ridker, Beatriz Rodriguez, Annika Rosengren, Naveed Sattar, Ben Schöttker, Joseph E Schwartz, Steven Shea, Martin J Shipley, Reecha Sofat, Barbara Thorand, W M Monique Verschuren, Henry Völzke, Nicholas J Wareham, Leo Westbury, Peter Willeit, Bin Zhou, John Danesh, Frank L J Visseren, Emanuele Di Angelantonio, Lisa Pennells, Jannick A N Dorresteijn","doi":"10.1093/eurjpc/zwae174","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>The 2021 European Society of Cardiology prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding initiation of prevention. We aimed to update and systematically recalibrate the LIFEtime-perspective CardioVascular Disease (LIFE-CVD) model to four European risk regions for the estimation of lifetime CVD risk for apparently healthy individuals.</p><p><strong>Methods and results: </strong>The updated LIFE-CVD (i.e. LIFE-CVD2) models were derived using individual participant data from 44 cohorts in 13 countries (687 135 individuals without established CVD, 30 939 CVD events in median 10.7 years of follow-up). LIFE-CVD2 uses sex-specific functions to estimate the lifetime risk of fatal and non-fatal CVD events with adjustment for the competing risk of non-CVD death and is systematically recalibrated to four distinct European risk regions. The updated models showed good discrimination in external validation among 1 657 707 individuals (61 311 CVD events) from eight additional European cohorts in seven countries, with a pooled C-index of 0.795 (95% confidence interval 0.767-0.822). Predicted and observed CVD event risks were well calibrated in population-wide electronic health records data in the UK (Clinical Practice Research Datalink) and the Netherlands (Extramural LUMC Academic Network). When using LIFE-CVD2 to estimate potential gain in CVD-free life expectancy from preventive therapy, projections varied by risk region reflecting important regional differences in absolute lifetime risk. For example, a 50-year-old smoking woman with a systolic blood pressure (SBP) of 140 mmHg was estimated to gain 0.9 years in the low-risk region vs. 1.6 years in the very high-risk region from lifelong 10 mmHg SBP reduction. The benefit of smoking cessation for this individual ranged from 3.6 years in the low-risk region to 4.8 years in the very high-risk region.</p><p><strong>Conclusion: </strong>By taking into account geographical differences in CVD incidence using contemporary representative data sources, the recalibrated LIFE-CVD2 model provides a more accurate tool for the prediction of lifetime risk and CVD-free life expectancy for individuals without previous CVD, facilitating shared decision-making for cardiovascular prevention as recommended by 2021 European guidelines.</p>","PeriodicalId":12051,"journal":{"name":"European journal of preventive cardiology","volume":" ","pages":"1690-1699"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of preventive cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/eurjpc/zwae174","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: The 2021 European Society of Cardiology prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding initiation of prevention. We aimed to update and systematically recalibrate the LIFEtime-perspective CardioVascular Disease (LIFE-CVD) model to four European risk regions for the estimation of lifetime CVD risk for apparently healthy individuals.

Methods and results: The updated LIFE-CVD (i.e. LIFE-CVD2) models were derived using individual participant data from 44 cohorts in 13 countries (687 135 individuals without established CVD, 30 939 CVD events in median 10.7 years of follow-up). LIFE-CVD2 uses sex-specific functions to estimate the lifetime risk of fatal and non-fatal CVD events with adjustment for the competing risk of non-CVD death and is systematically recalibrated to four distinct European risk regions. The updated models showed good discrimination in external validation among 1 657 707 individuals (61 311 CVD events) from eight additional European cohorts in seven countries, with a pooled C-index of 0.795 (95% confidence interval 0.767-0.822). Predicted and observed CVD event risks were well calibrated in population-wide electronic health records data in the UK (Clinical Practice Research Datalink) and the Netherlands (Extramural LUMC Academic Network). When using LIFE-CVD2 to estimate potential gain in CVD-free life expectancy from preventive therapy, projections varied by risk region reflecting important regional differences in absolute lifetime risk. For example, a 50-year-old smoking woman with a systolic blood pressure (SBP) of 140 mmHg was estimated to gain 0.9 years in the low-risk region vs. 1.6 years in the very high-risk region from lifelong 10 mmHg SBP reduction. The benefit of smoking cessation for this individual ranged from 3.6 years in the low-risk region to 4.8 years in the very high-risk region.

Conclusion: By taking into account geographical differences in CVD incidence using contemporary representative data sources, the recalibrated LIFE-CVD2 model provides a more accurate tool for the prediction of lifetime risk and CVD-free life expectancy for individuals without previous CVD, facilitating shared decision-making for cardiovascular prevention as recommended by 2021 European guidelines.

预测个人终生心血管风险和潜在治疗获益:开发并重新校准适用于四个欧洲风险地区的 LIFE-CVD2 模型。
目的:2021 年欧洲心脏病学会预防指南建议使用(终生)风险预测模型来帮助做出开始预防的决定。我们旨在更新并系统性地重新校准 LIFE-CVD(LIFE-time-perspective CardioVascular Disease)模型,使其适用于四个欧洲风险地区,以估算表面健康的个体终生心血管疾病风险:更新后的 LIFE-CVD(即 LIFE-CVD2)模型是利用 13 个国家 44 个队列中的个人参与者数据得出的(687135 人未确诊心血管疾病,在中位 10.7 年的随访中发生了 30939 起心血管疾病事件)。LIFE-CVD2 使用性别特异性函数来估算致命和非致命心血管疾病事件的终生风险,并对非心血管疾病死亡的竞争风险进行调整,还根据四个不同的欧洲风险地区进行了系统的重新校准。更新后的模型在来自七个国家的八个额外欧洲队列的 1,657,707 人(61,311 起心血管疾病事件)的外部验证中显示出良好的区分度,汇总 C 指数为 0.795(95%CI 0.767-0.822)。在英国(CPRD)和荷兰(ELAN)的全人口电子健康记录数据中,预测和观察到的心血管疾病事件风险得到了很好的校准。在使用 LIFE-CVD2 估算预防性治疗对无心血管疾病预期寿命的潜在增益时,不同风险地区的预测结果各不相同,这反映出各地区在终生绝对风险方面存在重大差异。例如,一名 50 岁吸烟妇女的 SBP 为 140 毫米汞柱,据估计,如果终生降低 10 毫米汞柱的 SBP,在低风险地区可获得 0.9 年的预期寿命,而在极高风险地区则可获得 1.6 年的预期寿命。该患者的戒烟收益从低风险地区的 3.6 年到极高风险地区的 4.8 年不等:通过使用当代具有代表性的数据源考虑心血管疾病发病率的地域差异,重新校准后的 LIFE-CVD2 模型为预测既往无心血管疾病的个体的终生风险和无心血管疾病的预期寿命提供了更准确的工具,有助于根据 2021 年欧洲指南的建议共同做出心血管疾病预防决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European journal of preventive cardiology
European journal of preventive cardiology CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
12.50
自引率
12.00%
发文量
601
审稿时长
3-8 weeks
期刊介绍: European Journal of Preventive Cardiology (EJPC) is an official journal of the European Society of Cardiology (ESC) and the European Association of Preventive Cardiology (EAPC). The journal covers a wide range of scientific, clinical, and public health disciplines related to cardiovascular disease prevention, risk factor management, cardiovascular rehabilitation, population science and public health, and exercise physiology. The categories covered by the journal include classical risk factors and treatment, lifestyle risk factors, non-modifiable cardiovascular risk factors, cardiovascular conditions, concomitant pathological conditions, sport cardiology, diagnostic tests, care settings, epidemiology, pharmacology and pharmacotherapy, machine learning, and artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信