Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study.

IF 1.3 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Christian Kapper, Lukas Müller, Andrea Kronfeld, Mario Alberto Abello Mercado, Sebastian Altmann, Nils Grauhan, Dirk Graafen, Marc A Brockmann, Ahmed E Othman
{"title":"Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study.","authors":"Christian Kapper, Lukas Müller, Andrea Kronfeld, Mario Alberto Abello Mercado, Sebastian Altmann, Nils Grauhan, Dirk Graafen, Marc A Brockmann, Ahmed E Othman","doi":"10.1055/a-2290-4781","DOIUrl":null,"url":null,"abstract":"<p><p>To evaluate the effect of a vendor-agnostic deep learning denoising (DLD) algorithm on diagnostic image quality of non-contrast cranial computed tomography (ncCT) across five CT scanners.This retrospective single-center study included ncCT data of 150 consecutive patients (30 for each of the five scanners) who had undergone routine imaging after minor head trauma. The images were reconstructed using filtered back projection (FBP) and a vendor-agnostic DLD method. Using a 4-point Likert scale, three readers performed a subjective evaluation assessing the following quality criteria: overall diagnostic image quality, image noise, gray matter-white matter differentiation (GM-WM), artifacts, sharpness, and diagnostic confidence. Objective analysis included evaluation of noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and an artifact index for the posterior fossa.In subjective image quality assessment, DLD showed constantly superior results compared to FBP in all categories and for all scanners (p<0.05) across all readers. The objective image quality analysis showed significant improvement in noise, SNR, and CNR as well as for the artifact index using DLD for all scanners (p<0.001).The vendor-agnostic deep learning denoising algorithm provided significantly superior results in the subjective as well as in the objective analysis of ncCT images of patients with minor head trauma concerning all parameters compared to the FBP reconstruction. This effect has been observed in all five included scanners. · Significant improvement of image quality for 5 scanners due to the vendor-agnostic DLD. · Subjects were patients with routine imaging after minor head trauma. · Reduction of artifacts in the posterior fossa due to the DLD. · Access to improved image quality even for older scanners from different vendors. · Kapper C, Müller L, Kronfeld A et al. Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study. Fortschr Röntgenstr 2024; DOI 10.1055/a-2290-4781.</p>","PeriodicalId":21490,"journal":{"name":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","volume":" ","pages":"65-75"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2290-4781","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

To evaluate the effect of a vendor-agnostic deep learning denoising (DLD) algorithm on diagnostic image quality of non-contrast cranial computed tomography (ncCT) across five CT scanners.This retrospective single-center study included ncCT data of 150 consecutive patients (30 for each of the five scanners) who had undergone routine imaging after minor head trauma. The images were reconstructed using filtered back projection (FBP) and a vendor-agnostic DLD method. Using a 4-point Likert scale, three readers performed a subjective evaluation assessing the following quality criteria: overall diagnostic image quality, image noise, gray matter-white matter differentiation (GM-WM), artifacts, sharpness, and diagnostic confidence. Objective analysis included evaluation of noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and an artifact index for the posterior fossa.In subjective image quality assessment, DLD showed constantly superior results compared to FBP in all categories and for all scanners (p<0.05) across all readers. The objective image quality analysis showed significant improvement in noise, SNR, and CNR as well as for the artifact index using DLD for all scanners (p<0.001).The vendor-agnostic deep learning denoising algorithm provided significantly superior results in the subjective as well as in the objective analysis of ncCT images of patients with minor head trauma concerning all parameters compared to the FBP reconstruction. This effect has been observed in all five included scanners. · Significant improvement of image quality for 5 scanners due to the vendor-agnostic DLD. · Subjects were patients with routine imaging after minor head trauma. · Reduction of artifacts in the posterior fossa due to the DLD. · Access to improved image quality even for older scanners from different vendors. · Kapper C, Müller L, Kronfeld A et al. Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study. Fortschr Röntgenstr 2024; DOI 10.1055/a-2290-4781.

在脑部计算机断层扫描中,供应商无关的深度学习图像去噪的价值:多扫描仪研究
这项回顾性单中心研究纳入了 150 名轻微头部创伤后接受常规成像的连续患者(五台扫描仪各 30 名患者)的 ncCT 数据(五台扫描仪各 30 名患者)。这些图像使用滤波背投影(FBP)和供应商认证的 DLD 方法进行重建。三名读者使用 4 点李克特量表进行主观评价,评估以下质量标准:整体诊断图像质量、图像噪声、灰质-白质分化(GM-WM)、伪影、清晰度和诊断信心。客观分析包括噪声、对比度-噪声比(CNR)、信噪比(SNR)和后窝伪影指数的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
5.60%
发文量
340
期刊介绍: Die RöFo veröffentlicht Originalarbeiten, Übersichtsartikel und Fallberichte aus dem Bereich der Radiologie und den weiteren bildgebenden Verfahren in der Medizin. Es dürfen nur Arbeiten eingereicht werden, die noch nicht veröffentlicht sind und die auch nicht gleichzeitig einer anderen Zeitschrift zur Veröffentlichung angeboten wurden. Alle eingereichten Beiträge unterliegen einer sorgfältigen fachlichen Begutachtung. Gegründet 1896 – nur knapp 1 Jahr nach der Entdeckung der Röntgenstrahlen durch C.W. Röntgen – blickt die RöFo auf über 100 Jahre Erfahrung als wichtigstes Publikationsmedium in der deutschsprachigen Radiologie zurück. Sie ist damit die älteste radiologische Fachzeitschrift und schafft es erfolgreich, lange Kontinuität mit dem Anspruch an wissenschaftliches Publizieren auf internationalem Niveau zu verbinden. Durch ihren zentralen Platz im Verlagsprogramm stellte die RöFo die Basis für das heute umfassende und erfolgreiche Radiologie-Medienangebot im Georg Thieme Verlag. Besonders eng verbunden ist die RöFo mit der Geschichte der Röntgengesellschaften in Deutschland und Österreich. Sie ist offizielles Organ von DRG und ÖRG und die Mitglieder der Fachgesellschaften erhalten die Zeitschrift im Rahmen ihrer Mitgliedschaft. Mit ihrem wissenschaftlichen Kernteil und dem eigenen Mitteilungsteil der Fachgesellschaften bietet die RöFo Monat für Monat ein Forum für den Austausch von Inhalten und Botschaften der radiologischen Community im deutschsprachigen Raum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信