Christian Kapper, Lukas Müller, Andrea Kronfeld, Mario Alberto Abello Mercado, Sebastian Altmann, Nils Grauhan, Dirk Graafen, Marc A Brockmann, Ahmed E Othman
{"title":"Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study.","authors":"Christian Kapper, Lukas Müller, Andrea Kronfeld, Mario Alberto Abello Mercado, Sebastian Altmann, Nils Grauhan, Dirk Graafen, Marc A Brockmann, Ahmed E Othman","doi":"10.1055/a-2290-4781","DOIUrl":null,"url":null,"abstract":"<p><p>To evaluate the effect of a vendor-agnostic deep learning denoising (DLD) algorithm on diagnostic image quality of non-contrast cranial computed tomography (ncCT) across five CT scanners.This retrospective single-center study included ncCT data of 150 consecutive patients (30 for each of the five scanners) who had undergone routine imaging after minor head trauma. The images were reconstructed using filtered back projection (FBP) and a vendor-agnostic DLD method. Using a 4-point Likert scale, three readers performed a subjective evaluation assessing the following quality criteria: overall diagnostic image quality, image noise, gray matter-white matter differentiation (GM-WM), artifacts, sharpness, and diagnostic confidence. Objective analysis included evaluation of noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and an artifact index for the posterior fossa.In subjective image quality assessment, DLD showed constantly superior results compared to FBP in all categories and for all scanners (p<0.05) across all readers. The objective image quality analysis showed significant improvement in noise, SNR, and CNR as well as for the artifact index using DLD for all scanners (p<0.001).The vendor-agnostic deep learning denoising algorithm provided significantly superior results in the subjective as well as in the objective analysis of ncCT images of patients with minor head trauma concerning all parameters compared to the FBP reconstruction. This effect has been observed in all five included scanners. · Significant improvement of image quality for 5 scanners due to the vendor-agnostic DLD. · Subjects were patients with routine imaging after minor head trauma. · Reduction of artifacts in the posterior fossa due to the DLD. · Access to improved image quality even for older scanners from different vendors. · Kapper C, Müller L, Kronfeld A et al. Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study. Fortschr Röntgenstr 2024; DOI 10.1055/a-2290-4781.</p>","PeriodicalId":21490,"journal":{"name":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","volume":" ","pages":"65-75"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2290-4781","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
To evaluate the effect of a vendor-agnostic deep learning denoising (DLD) algorithm on diagnostic image quality of non-contrast cranial computed tomography (ncCT) across five CT scanners.This retrospective single-center study included ncCT data of 150 consecutive patients (30 for each of the five scanners) who had undergone routine imaging after minor head trauma. The images were reconstructed using filtered back projection (FBP) and a vendor-agnostic DLD method. Using a 4-point Likert scale, three readers performed a subjective evaluation assessing the following quality criteria: overall diagnostic image quality, image noise, gray matter-white matter differentiation (GM-WM), artifacts, sharpness, and diagnostic confidence. Objective analysis included evaluation of noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and an artifact index for the posterior fossa.In subjective image quality assessment, DLD showed constantly superior results compared to FBP in all categories and for all scanners (p<0.05) across all readers. The objective image quality analysis showed significant improvement in noise, SNR, and CNR as well as for the artifact index using DLD for all scanners (p<0.001).The vendor-agnostic deep learning denoising algorithm provided significantly superior results in the subjective as well as in the objective analysis of ncCT images of patients with minor head trauma concerning all parameters compared to the FBP reconstruction. This effect has been observed in all five included scanners. · Significant improvement of image quality for 5 scanners due to the vendor-agnostic DLD. · Subjects were patients with routine imaging after minor head trauma. · Reduction of artifacts in the posterior fossa due to the DLD. · Access to improved image quality even for older scanners from different vendors. · Kapper C, Müller L, Kronfeld A et al. Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study. Fortschr Röntgenstr 2024; DOI 10.1055/a-2290-4781.
期刊介绍:
Die RöFo veröffentlicht Originalarbeiten, Übersichtsartikel und Fallberichte aus dem Bereich der Radiologie und den weiteren bildgebenden Verfahren in der Medizin. Es dürfen nur Arbeiten eingereicht werden, die noch nicht veröffentlicht sind und die auch nicht gleichzeitig einer anderen Zeitschrift zur Veröffentlichung angeboten wurden. Alle eingereichten Beiträge unterliegen einer sorgfältigen fachlichen Begutachtung.
Gegründet 1896 – nur knapp 1 Jahr nach der Entdeckung der Röntgenstrahlen durch C.W. Röntgen – blickt die RöFo auf über 100 Jahre Erfahrung als wichtigstes Publikationsmedium in der deutschsprachigen Radiologie zurück. Sie ist damit die älteste radiologische Fachzeitschrift und schafft es erfolgreich, lange Kontinuität mit dem Anspruch an wissenschaftliches Publizieren auf internationalem Niveau zu verbinden. Durch ihren zentralen Platz im Verlagsprogramm stellte die RöFo die Basis für das heute umfassende und erfolgreiche Radiologie-Medienangebot im Georg Thieme Verlag.
Besonders eng verbunden ist die RöFo mit der Geschichte der Röntgengesellschaften in Deutschland und Österreich. Sie ist offizielles Organ von DRG und ÖRG und die Mitglieder der Fachgesellschaften erhalten die Zeitschrift im Rahmen ihrer Mitgliedschaft. Mit ihrem wissenschaftlichen Kernteil und dem eigenen Mitteilungsteil der Fachgesellschaften bietet die RöFo Monat für Monat ein Forum für den Austausch von Inhalten und Botschaften der radiologischen Community im deutschsprachigen Raum.