An adaptive certified space-time reduced basis method for nonsmooth parabolic partial differential equations

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Marco Bernreuther, Stefan Volkwein
{"title":"An adaptive certified space-time reduced basis method for nonsmooth parabolic partial differential equations","authors":"Marco Bernreuther,&nbsp;Stefan Volkwein","doi":"10.1007/s10444-024-10137-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a nonsmooth semilinear parabolic partial differential equation (PDE) is considered. For a reduced basis (RB) approach, a space-time formulation is used to develop a certified a-posteriori error estimator. This error estimator is adopted to the presence of the discrete empirical interpolation method (DEIM) as approximation technique for the nonsmoothness. The separability of the estimated error into an RB and a DEIM part then guides the development of an adaptive RB-DEIM algorithm, combining both offline phases into one. Numerical experiments show the capabilities of this novel approach in comparison with classical RB and RB-DEIM approaches.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10137-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10137-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a nonsmooth semilinear parabolic partial differential equation (PDE) is considered. For a reduced basis (RB) approach, a space-time formulation is used to develop a certified a-posteriori error estimator. This error estimator is adopted to the presence of the discrete empirical interpolation method (DEIM) as approximation technique for the nonsmoothness. The separability of the estimated error into an RB and a DEIM part then guides the development of an adaptive RB-DEIM algorithm, combining both offline phases into one. Numerical experiments show the capabilities of this novel approach in comparison with classical RB and RB-DEIM approaches.

非光滑抛物型偏微分方程的自适应认证时空还原基方法
本文考虑了一个非光滑半线性抛物线偏微分方程(PDE)。在还原基(RB)方法中,使用时空公式开发了一个经过认证的后验误差估计器。该误差估计器采用离散经验插值法(DEIM)作为非光滑性的近似技术。然后,将估计误差分为 RB 和 DEIM 两部分的可分离性指导了自适应 RB-DEIM 算法的开发,将两个离线阶段合二为一。数值实验表明,与传统的 RB 和 RB-DEIM 方法相比,这种新方法具有更强的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信