Robert C. Hill, Gordon D. Z. Williams, Zhen Wang, Jun Hu, Tayel El-Hasan, Owen W. Duckworth, Ewald Schnug, Roland Bol, Anjali Singh and Avner Vengosh*,
{"title":"Tracing the Environmental Effects of Mineral Fertilizer Application with Trace Elements and Strontium Isotope Variations","authors":"Robert C. Hill, Gordon D. Z. Williams, Zhen Wang, Jun Hu, Tayel El-Hasan, Owen W. Duckworth, Ewald Schnug, Roland Bol, Anjali Singh and Avner Vengosh*, ","doi":"10.1021/acs.estlett.4c00170","DOIUrl":null,"url":null,"abstract":"<p >Fertilizer utilization is critical for food security. This study examines the occurrence of trace elements (TEs) and Sr isotope (<sup>87</sup>Sr/<sup>86</sup>Sr) variations in phosphate rocks and mineral fertilizers from a sample collection representative of major phosphate producing countries. We show high concentrations of several TEs in phosphate rocks (<i>n</i> = 76) and their selective enrichment in phosphate fertilizers (<i>n</i> = 40) of specific origin. Consistent with the concentrations in parent phosphate rocks, phosphate fertilizers from the U.S. and Middle East have substantially higher concentrations of U, Cd, Cr, V, and Mo than those in fertilizers from China and India. Yet, fertilizers from China and India generally have higher concentrations of As. The <sup>87</sup>Sr/<sup>86</sup>Sr in phosphate fertilizers directly mimic the composition of their source phosphate rocks, with distinctive higher ratios in fertilizers from China and India (0.70955–0.71939) relative to phosphate fertilizers from U.S. and Middle East (0.70748–0.70888). Potash fertilizers have less Sr and TEs and higher <sup>87</sup>Sr/<sup>86</sup>Sr (0.72017–0.79016), causing higher <sup>87</sup>Sr/<sup>86</sup>Sr in mixed NPK-fertilizers. Selective extraction (Mehlich III) of soils from an experimental agricultural site shows relative enrichment of potentially plant-available P, Sr, and TEs in topsoil, which is associated with Sr isotope variation toward the <sup>87</sup>Sr/<sup>86</sup>Sr of the local utilized phosphate fertilizer.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 6","pages":"604–610"},"PeriodicalIF":8.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00170","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fertilizer utilization is critical for food security. This study examines the occurrence of trace elements (TEs) and Sr isotope (87Sr/86Sr) variations in phosphate rocks and mineral fertilizers from a sample collection representative of major phosphate producing countries. We show high concentrations of several TEs in phosphate rocks (n = 76) and their selective enrichment in phosphate fertilizers (n = 40) of specific origin. Consistent with the concentrations in parent phosphate rocks, phosphate fertilizers from the U.S. and Middle East have substantially higher concentrations of U, Cd, Cr, V, and Mo than those in fertilizers from China and India. Yet, fertilizers from China and India generally have higher concentrations of As. The 87Sr/86Sr in phosphate fertilizers directly mimic the composition of their source phosphate rocks, with distinctive higher ratios in fertilizers from China and India (0.70955–0.71939) relative to phosphate fertilizers from U.S. and Middle East (0.70748–0.70888). Potash fertilizers have less Sr and TEs and higher 87Sr/86Sr (0.72017–0.79016), causing higher 87Sr/86Sr in mixed NPK-fertilizers. Selective extraction (Mehlich III) of soils from an experimental agricultural site shows relative enrichment of potentially plant-available P, Sr, and TEs in topsoil, which is associated with Sr isotope variation toward the 87Sr/86Sr of the local utilized phosphate fertilizer.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.