{"title":"Axisymmetric virtual elements for problems of elasticity and plasticity","authors":"Louie L. Yaw","doi":"10.1002/nme.7493","DOIUrl":null,"url":null,"abstract":"<p>The virtual element method (VEM) allows discretization of elasticity and plasticity problems with polygons in 2D and polyhedrals in 3D. The polygons (and polyhedrals) can have an arbitrary number of sides and can be concave or convex. These features, among others, are attractive for meshing complex geometries. However, to the author's knowledge axisymmetric virtual elements have not appeared before in the literature. Hence, in this work a novel first order consistent axisymmetric VEM is applied to problems of elasticity and plasticity. The VEM specific implementation details and adjustments needed to solve axisymmetric simulations are presented. Representative benchmark problems including pressure vessels and circular plates are illustrated. Examples also show that problems of near incompressibility are solved successfully. Consequently, this research demonstrates that the axisymmetric VEM formulation successfully solves certain classes of solid mechanics problems. The work concludes with a discussion of results for the current formulation and future research directions.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"125 15","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7493","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The virtual element method (VEM) allows discretization of elasticity and plasticity problems with polygons in 2D and polyhedrals in 3D. The polygons (and polyhedrals) can have an arbitrary number of sides and can be concave or convex. These features, among others, are attractive for meshing complex geometries. However, to the author's knowledge axisymmetric virtual elements have not appeared before in the literature. Hence, in this work a novel first order consistent axisymmetric VEM is applied to problems of elasticity and plasticity. The VEM specific implementation details and adjustments needed to solve axisymmetric simulations are presented. Representative benchmark problems including pressure vessels and circular plates are illustrated. Examples also show that problems of near incompressibility are solved successfully. Consequently, this research demonstrates that the axisymmetric VEM formulation successfully solves certain classes of solid mechanics problems. The work concludes with a discussion of results for the current formulation and future research directions.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.