Theta cycles and the Beilinson–Bloch–Kato conjectures

IF 0.6 3区 数学 Q3 MATHEMATICS
Daniel Disegni
{"title":"Theta cycles and the Beilinson–Bloch–Kato conjectures","authors":"Daniel Disegni","doi":"10.1016/j.jnt.2024.04.001","DOIUrl":null,"url":null,"abstract":"We introduce ‘canonical’ classes in the Selmer groups of certain Galois representations with a conjugate-symplectic symmetry. They are images of special cycles in unitary Shimura varieties, and defined uniquely up to a scalar. The construction is a slight refinement of one of Y. Liu, based on the conjectural modularity of Kudla's theta series of special cycles. For 2-dimensional representations, Theta cycles are (the Selmer images of) Heegner points. In general, they conjecturally exhibit an analogous strong relation with the Beilinson–Bloch–Kato conjectures in rank 1, for which we gather the available evidence.","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"31 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.jnt.2024.04.001","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce ‘canonical’ classes in the Selmer groups of certain Galois representations with a conjugate-symplectic symmetry. They are images of special cycles in unitary Shimura varieties, and defined uniquely up to a scalar. The construction is a slight refinement of one of Y. Liu, based on the conjectural modularity of Kudla's theta series of special cycles. For 2-dimensional representations, Theta cycles are (the Selmer images of) Heegner points. In general, they conjecturally exhibit an analogous strong relation with the Beilinson–Bloch–Kato conjectures in rank 1, for which we gather the available evidence.
Theta 循环和贝林松-布洛赫-卡托猜想
我们在某些具有共轭交错对称性的伽罗瓦表示的塞尔默群中引入了 "典型 "类。它们是单元志村变中特殊循环的图像,并且是唯一定义的标量。这一构造是对刘玉良的构造的细微改进,它基于库德拉特殊循环的 Theta 序列的猜想模块性。对于二维表示,Theta 循环是(希格纳点的塞尔玛图像)。一般而言,它们在秩 1 中与贝林森-布洛赫-加藤猜想有类似的紧密联系,我们收集了这方面的现有证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信