On induced subgraph of Cartesian product of paths

Pub Date : 2024-05-09 DOI:10.1002/jgt.23116
Jiasheng Zeng, Xinmin Hou
{"title":"On induced subgraph of Cartesian product of paths","authors":"Jiasheng Zeng,&nbsp;Xinmin Hou","doi":"10.1002/jgt.23116","DOIUrl":null,"url":null,"abstract":"<p>Chung et al. constructed an induced subgraph of the hypercube <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n </mrow>\n <annotation> ${Q}^{n}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\alpha ({Q}^{n})+1$</annotation>\n </semantics></math> vertices and with maximum degree smaller than <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\sqrt{n}\\rceil $</annotation>\n </semantics></math>. Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n </mrow>\n <annotation> ${Q}^{n}$</annotation>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\sqrt{n}\\rceil $</annotation>\n </semantics></math>, and posed the question: Given a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f(G)$</annotation>\n </semantics></math> be the minimum of the maximum degree of an induced subgraph of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\alpha (G)+1$</annotation>\n </semantics></math> vertices, what can we say about <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f(G)$</annotation>\n </semantics></math>? In this paper, we investigate this question for Cartesian product of paths <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> ${P}_{m}$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n </mrow>\n <annotation> ${P}_{m}^{k}$</annotation>\n </semantics></math>. We determine the exact values of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{m}^{k})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $m=2n+1$</annotation>\n </semantics></math> by showing that <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $f({P}_{2n+1}^{k})=1$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $n\\ge 2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>3</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $f({P}_{3}^{k})=2$</annotation>\n </semantics></math>, and give a nontrivial lower bound of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{m}^{k})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n <annotation> $m=2n$</annotation>\n </semantics></math> by showing that <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>cos</mi>\n \n <mfrac>\n <mrow>\n <mi>π</mi>\n \n <mi>n</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <msqrt>\n <mi>k</mi>\n </msqrt>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{2n}^{k})\\ge \\lceil 2\\cos \\frac{\\pi n}{2n+1}\\sqrt{k}\\rceil $</annotation>\n </semantics></math>. In particular, when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $n=1$</annotation>\n </semantics></math>, we have <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>Q</mi>\n \n <mi>k</mi>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>2</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msqrt>\n <mi>k</mi>\n </msqrt>\n </mrow>\n <annotation> $f({Q}^{k})=f({P}_{2}^{k})\\ge \\sqrt{k}$</annotation>\n </semantics></math>, which is Huang's result. The lower bounds of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>3</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{3}^{k})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{2n}^{k})$</annotation>\n </semantics></math> are given by using the spectral method provided by Huang.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chung et al. constructed an induced subgraph of the hypercube Q n ${Q}^{n}$ with α ( Q n ) + 1 $\alpha ({Q}^{n})+1$ vertices and with maximum degree smaller than n $\lceil \sqrt{n}\rceil $ . Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube Q n ${Q}^{n}$ is at least n $\lceil \sqrt{n}\rceil $ , and posed the question: Given a graph G $G$ , let f ( G ) $f(G)$ be the minimum of the maximum degree of an induced subgraph of G $G$ on α ( G ) + 1 $\alpha (G)+1$ vertices, what can we say about f ( G ) $f(G)$ ? In this paper, we investigate this question for Cartesian product of paths P m ${P}_{m}$ , denoted by P m k ${P}_{m}^{k}$ . We determine the exact values of f ( P m k ) $f({P}_{m}^{k})$ when m = 2 n + 1 $m=2n+1$ by showing that f ( P 2 n + 1 k ) = 1 $f({P}_{2n+1}^{k})=1$ for n 2 $n\ge 2$ and f ( P 3 k ) = 2 $f({P}_{3}^{k})=2$ , and give a nontrivial lower bound of f ( P m k ) $f({P}_{m}^{k})$ when m = 2 n $m=2n$ by showing that f ( P 2 n k ) 2 cos π n 2 n + 1 k $f({P}_{2n}^{k})\ge \lceil 2\cos \frac{\pi n}{2n+1}\sqrt{k}\rceil $ . In particular, when n = 1 $n=1$ , we have f ( Q k ) = f ( P 2 k ) k $f({Q}^{k})=f({P}_{2}^{k})\ge \sqrt{k}$ , which is Huang's result. The lower bounds of f ( P 3 k ) $f({P}_{3}^{k})$ and f ( P 2 n k ) $f({P}_{2n}^{k})$ are given by using the spectral method provided by Huang.

分享
查看原文
论路径笛卡尔积的诱导子图
Chung 等人构建了一个有顶点且最大度小于 的超立方体诱导子图。 随后,Huang 证明了超立方体诱导子图的最大度至少为 ,从而证明了灵敏度猜想,并提出了一个问题:给定一个图,让顶点上的诱导子图的最大度的最小值为 ,我们能说什么呢?在本文中,我们针对路径的笛卡尔乘积 ,研究了这个问题。通过证明 和 ,我们确定了 when 的精确值,并通过证明 。特别是,当 时,我们有 ,这是黄的结果。和 的下界是利用黄氏提供的谱方法给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信