On induced subgraph of Cartesian product of paths

IF 0.9 3区 数学 Q2 MATHEMATICS
Jiasheng Zeng, Xinmin Hou
{"title":"On induced subgraph of Cartesian product of paths","authors":"Jiasheng Zeng,&nbsp;Xinmin Hou","doi":"10.1002/jgt.23116","DOIUrl":null,"url":null,"abstract":"<p>Chung et al. constructed an induced subgraph of the hypercube <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n </mrow>\n <annotation> ${Q}^{n}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\alpha ({Q}^{n})+1$</annotation>\n </semantics></math> vertices and with maximum degree smaller than <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\sqrt{n}\\rceil $</annotation>\n </semantics></math>. Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n </mrow>\n <annotation> ${Q}^{n}$</annotation>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\sqrt{n}\\rceil $</annotation>\n </semantics></math>, and posed the question: Given a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f(G)$</annotation>\n </semantics></math> be the minimum of the maximum degree of an induced subgraph of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\alpha (G)+1$</annotation>\n </semantics></math> vertices, what can we say about <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f(G)$</annotation>\n </semantics></math>? In this paper, we investigate this question for Cartesian product of paths <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> ${P}_{m}$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n </mrow>\n <annotation> ${P}_{m}^{k}$</annotation>\n </semantics></math>. We determine the exact values of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{m}^{k})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $m=2n+1$</annotation>\n </semantics></math> by showing that <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $f({P}_{2n+1}^{k})=1$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $n\\ge 2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>3</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $f({P}_{3}^{k})=2$</annotation>\n </semantics></math>, and give a nontrivial lower bound of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{m}^{k})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n <annotation> $m=2n$</annotation>\n </semantics></math> by showing that <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>cos</mi>\n \n <mfrac>\n <mrow>\n <mi>π</mi>\n \n <mi>n</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <msqrt>\n <mi>k</mi>\n </msqrt>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{2n}^{k})\\ge \\lceil 2\\cos \\frac{\\pi n}{2n+1}\\sqrt{k}\\rceil $</annotation>\n </semantics></math>. In particular, when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $n=1$</annotation>\n </semantics></math>, we have <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>Q</mi>\n \n <mi>k</mi>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>2</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msqrt>\n <mi>k</mi>\n </msqrt>\n </mrow>\n <annotation> $f({Q}^{k})=f({P}_{2}^{k})\\ge \\sqrt{k}$</annotation>\n </semantics></math>, which is Huang's result. The lower bounds of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>3</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{3}^{k})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{2n}^{k})$</annotation>\n </semantics></math> are given by using the spectral method provided by Huang.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 1","pages":"169-180"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23116","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Chung et al. constructed an induced subgraph of the hypercube Q n ${Q}^{n}$ with α ( Q n ) + 1 $\alpha ({Q}^{n})+1$ vertices and with maximum degree smaller than n $\lceil \sqrt{n}\rceil $ . Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube Q n ${Q}^{n}$ is at least n $\lceil \sqrt{n}\rceil $ , and posed the question: Given a graph G $G$ , let f ( G ) $f(G)$ be the minimum of the maximum degree of an induced subgraph of G $G$ on α ( G ) + 1 $\alpha (G)+1$ vertices, what can we say about f ( G ) $f(G)$ ? In this paper, we investigate this question for Cartesian product of paths P m ${P}_{m}$ , denoted by P m k ${P}_{m}^{k}$ . We determine the exact values of f ( P m k ) $f({P}_{m}^{k})$ when m = 2 n + 1 $m=2n+1$ by showing that f ( P 2 n + 1 k ) = 1 $f({P}_{2n+1}^{k})=1$ for n 2 $n\ge 2$ and f ( P 3 k ) = 2 $f({P}_{3}^{k})=2$ , and give a nontrivial lower bound of f ( P m k ) $f({P}_{m}^{k})$ when m = 2 n $m=2n$ by showing that f ( P 2 n k ) 2 cos π n 2 n + 1 k $f({P}_{2n}^{k})\ge \lceil 2\cos \frac{\pi n}{2n+1}\sqrt{k}\rceil $ . In particular, when n = 1 $n=1$ , we have f ( Q k ) = f ( P 2 k ) k $f({Q}^{k})=f({P}_{2}^{k})\ge \sqrt{k}$ , which is Huang's result. The lower bounds of f ( P 3 k ) $f({P}_{3}^{k})$ and f ( P 2 n k ) $f({P}_{2n}^{k})$ are given by using the spectral method provided by Huang.

论路径笛卡尔积的诱导子图
Chung 等人构建了一个有顶点且最大度小于 的超立方体诱导子图。 随后,Huang 证明了超立方体诱导子图的最大度至少为 ,从而证明了灵敏度猜想,并提出了一个问题:给定一个图,让顶点上的诱导子图的最大度的最小值为 ,我们能说什么呢?在本文中,我们针对路径的笛卡尔乘积 ,研究了这个问题。通过证明 和 ,我们确定了 when 的精确值,并通过证明 。特别是,当 时,我们有 ,这是黄的结果。和 的下界是利用黄氏提供的谱方法给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信