Nakka Praveenkumar, Nasina Madhusudhana Rao and Maddikera Kalyan Chakravarthi
{"title":"Structural, Optical, and Magnetic Properties of Mn Doped Zn3P2 Diluted Magnetic Semiconductor Nanoparticles","authors":"Nakka Praveenkumar, Nasina Madhusudhana Rao and Maddikera Kalyan Chakravarthi","doi":"10.1149/2162-8777/ad47d1","DOIUrl":null,"url":null,"abstract":"Mn-doped Zn3P2-diluted magnetic semiconducting nanoparticles (Zn0.98Mn0.02P2, Zn0.96Mn0.04P2, Zn0.94Mn0.06P2, and Zn0.92Mn0.08P2) were synthesized by a conventional solid-state reaction followed by a subsequent vacuum annealing process. The formation of a tetragonal structure of pure and Mn-doped Zn3P2 was confirmed by X-ray diffraction studies, with no evidence of any further phases. Lattice parameters dicrease from a = b = 8.133 Å, c = 11.459 Å to a = b = 8.041 Å, c = 11.410 Å with increasing dopant concentration. Scanning electron microscpy analysis indicated that all samples that underwent doping exhibited agglomeration in the scanned range of 500 nm. Energy-dispersive X-ray analysis confirmed the presence of Zn, P, and Mn in the samples, and all of the synthesized samples achieved a nearly atomic ratio. In the diffused reflectance spectra, the optical band gap increases from 1.398 to 1.418 eV with increasing dopant concentration. PL has provided evidence indicating that the emission intensity of all doped samples remains constant with increasing dopant content from x = 0.02 to 0.08, with different excitation wavelengths (215 and 290 nm). Vibrating sample magnetometer tests confirmed the presence of ferromagnetic behavior at room temperature, and a positive correlation between saturation magnetization and Mn content, with the magnetic moment increasing from 0.0640 to 0.1181 emu g−1 with an increase in dopant content. Highlights Mn-doped Zn3P2 nanoparticles synthesized by solid-state reaction method. Characterization analysis of as prepared nanoparticles using XRD, SEM, EDAX, UV–vis-NIR, PL, and VSM. Mn (x = 0.08) doped Zn3P2 showed strong room temperature ferromagnetism than Mn (x = 0.02 to 0.06) doped Zn3P2 nanoparticles. Mn-doped Zn3P2 nanoparticles are potential materials for future spintronics.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"129 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad47d1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mn-doped Zn3P2-diluted magnetic semiconducting nanoparticles (Zn0.98Mn0.02P2, Zn0.96Mn0.04P2, Zn0.94Mn0.06P2, and Zn0.92Mn0.08P2) were synthesized by a conventional solid-state reaction followed by a subsequent vacuum annealing process. The formation of a tetragonal structure of pure and Mn-doped Zn3P2 was confirmed by X-ray diffraction studies, with no evidence of any further phases. Lattice parameters dicrease from a = b = 8.133 Å, c = 11.459 Å to a = b = 8.041 Å, c = 11.410 Å with increasing dopant concentration. Scanning electron microscpy analysis indicated that all samples that underwent doping exhibited agglomeration in the scanned range of 500 nm. Energy-dispersive X-ray analysis confirmed the presence of Zn, P, and Mn in the samples, and all of the synthesized samples achieved a nearly atomic ratio. In the diffused reflectance spectra, the optical band gap increases from 1.398 to 1.418 eV with increasing dopant concentration. PL has provided evidence indicating that the emission intensity of all doped samples remains constant with increasing dopant content from x = 0.02 to 0.08, with different excitation wavelengths (215 and 290 nm). Vibrating sample magnetometer tests confirmed the presence of ferromagnetic behavior at room temperature, and a positive correlation between saturation magnetization and Mn content, with the magnetic moment increasing from 0.0640 to 0.1181 emu g−1 with an increase in dopant content. Highlights Mn-doped Zn3P2 nanoparticles synthesized by solid-state reaction method. Characterization analysis of as prepared nanoparticles using XRD, SEM, EDAX, UV–vis-NIR, PL, and VSM. Mn (x = 0.08) doped Zn3P2 showed strong room temperature ferromagnetism than Mn (x = 0.02 to 0.06) doped Zn3P2 nanoparticles. Mn-doped Zn3P2 nanoparticles are potential materials for future spintronics.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.