Plateau’s problem via the Allen–Cahn functional

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marco A. M. Guaraco, Stephen Lynch
{"title":"Plateau’s problem via the Allen–Cahn functional","authors":"Marco A. M. Guaraco, Stephen Lynch","doi":"10.1007/s00526-024-02740-6","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Gamma \\)</span> be a compact codimension-two submanifold of <span>\\({\\mathbb {R}}^n\\)</span>, and let <i>L</i> be a nontrivial real line bundle over <span>\\(X = {\\mathbb {R}}^n {\\setminus } \\Gamma \\)</span>. We study the Allen–Cahn functional, </p><span>$$\\begin{aligned}E_\\varepsilon (u) = \\int _X \\varepsilon \\frac{|\\nabla u|^2}{2} + \\frac{(1-|u|^2)^2}{4\\varepsilon }\\,dx, \\\\\\end{aligned}$$</span><p>on the space of sections <i>u</i> of <i>L</i>. Specifically, we are interested in critical sections for this functional and their relation to minimal hypersurfaces with boundary equal to <span>\\(\\Gamma \\)</span>. We first show that, for a family of critical sections with uniformly bounded energy, in the limit as <span>\\(\\varepsilon \\rightarrow 0\\)</span>, the associated family of energy measures converges to an integer rectifiable <span>\\((n-1)\\)</span>-varifold <i>V</i>. Moreover, <i>V</i> is stationary with respect to any variation which leaves <span>\\(\\Gamma \\)</span> fixed. Away from <span>\\(\\Gamma \\)</span>, this follows from work of Hutchinson–Tonegawa; our result extends their interior theory up to the boundary <span>\\(\\Gamma \\)</span>. Under additional hypotheses, we can say more about <i>V</i>. When <i>V</i> arises as a limit of critical sections with uniformly bounded Morse index, <span>\\(\\Sigma := {{\\,\\textrm{supp}\\,}}\\Vert V\\Vert \\)</span> is a minimal hypersurface, smooth away from <span>\\(\\Gamma \\)</span> and a singular set of Hausdorff dimension at most <span>\\(n-8\\)</span>. If the sections are globally energy minimizing and <span>\\(n = 3\\)</span>, then <span>\\(\\Sigma \\)</span> is a smooth surface with boundary, <span>\\(\\partial \\Sigma = \\Gamma \\)</span> (at least if <i>L</i> is chosen correctly), and <span>\\(\\Sigma \\)</span> has least area among all surfaces with these properties. We thus obtain a new proof (originally suggested in a paper of Fröhlich and Struwe) that the smooth version of Plateau’s problem admits a solution for every boundary curve in <span>\\({\\mathbb {R}}^3\\)</span>. This also works if <span>\\(4 \\le n\\le 7\\)</span> and <span>\\(\\Gamma \\)</span> is assumed to lie in a strictly convex hypersurface.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02740-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Gamma \) be a compact codimension-two submanifold of \({\mathbb {R}}^n\), and let L be a nontrivial real line bundle over \(X = {\mathbb {R}}^n {\setminus } \Gamma \). We study the Allen–Cahn functional,

$$\begin{aligned}E_\varepsilon (u) = \int _X \varepsilon \frac{|\nabla u|^2}{2} + \frac{(1-|u|^2)^2}{4\varepsilon }\,dx, \\\end{aligned}$$

on the space of sections u of L. Specifically, we are interested in critical sections for this functional and their relation to minimal hypersurfaces with boundary equal to \(\Gamma \). We first show that, for a family of critical sections with uniformly bounded energy, in the limit as \(\varepsilon \rightarrow 0\), the associated family of energy measures converges to an integer rectifiable \((n-1)\)-varifold V. Moreover, V is stationary with respect to any variation which leaves \(\Gamma \) fixed. Away from \(\Gamma \), this follows from work of Hutchinson–Tonegawa; our result extends their interior theory up to the boundary \(\Gamma \). Under additional hypotheses, we can say more about V. When V arises as a limit of critical sections with uniformly bounded Morse index, \(\Sigma := {{\,\textrm{supp}\,}}\Vert V\Vert \) is a minimal hypersurface, smooth away from \(\Gamma \) and a singular set of Hausdorff dimension at most \(n-8\). If the sections are globally energy minimizing and \(n = 3\), then \(\Sigma \) is a smooth surface with boundary, \(\partial \Sigma = \Gamma \) (at least if L is chosen correctly), and \(\Sigma \) has least area among all surfaces with these properties. We thus obtain a new proof (originally suggested in a paper of Fröhlich and Struwe) that the smooth version of Plateau’s problem admits a solution for every boundary curve in \({\mathbb {R}}^3\). This also works if \(4 \le n\le 7\) and \(\Gamma \) is assumed to lie in a strictly convex hypersurface.

通过艾伦-卡恩函数解决高原问题
让 \(\Gamma \) 是 \({\mathbb {R}}^n\) 的一个紧凑的二维子满面,让 L 是 \(X = {\mathbb {R}}^n {\setminus } \Gamma \)上的一个非难实线束。我们研究 Allen-Cahn 函数,$$\begin{aligned}E_\varepsilon (u) = \int _X \varepsilon \frac{|\nabla u|^2}{2}.+ \frac{(1-|u|^2)^2}{4\varepsilon }\,dx, \\end{aligned}$$on the space of sections u of L. 具体来说,我们对这个函数的临界截面及其与边界等于 \(\Gamma \)的最小超曲面的关系感兴趣。我们首先证明,对于具有均匀约束能量的临界截面族,在极限为 \(\varepsilon \rightarrow 0\) 时,相关的能量度量族收敛于一个整数可整流的 \((n-1)\)-变量V。在远离 \(\Gamma\) 的地方,这是从 Hutchinson-Tonegawa 的工作中得出的;我们的结果扩展了他们的内部理论,直到边界 \(\Gamma\) 。当 V 作为具有均匀有界莫尔斯指数的临界截面的极限出现时,\(\Sigma := {{\,\textrm{supp\},}}\Vert V\Vert \)是一个最小超曲面,远离\(\Gamma \)是光滑的,并且是一个 Hausdorff 维度最多为\(n-8\)的奇异集合。如果截面是全局能量最小化的,并且(n = 3),那么(\Sigma \)就是一个有边界的光滑曲面,(\partial \Sigma = \Gamma \)(至少如果 L 选择正确的话),并且(\Sigma \)在所有具有这些性质的曲面中面积最小。因此我们得到了一个新的证明(最初是在 Fröhlich 和 Struwe 的一篇论文中提出的),即 Plateau 问题的光滑版本对于 \({\mathbb {R}}^3\) 中的每一条边界曲线都有一个解。如果假定 \(4 \le n\le 7\) 和 \(\Gamma \)位于一个严格凸的超曲面中,这也是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信