Ergodic mean field games: existence of local minimizers up to the Sobolev critical case

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marco Cirant, Alessandro Cosenza, Gianmaria Verzini
{"title":"Ergodic mean field games: existence of local minimizers up to the Sobolev critical case","authors":"Marco Cirant, Alessandro Cosenza, Gianmaria Verzini","doi":"10.1007/s00526-024-02744-2","DOIUrl":null,"url":null,"abstract":"<p>We investigate the existence of solutions to viscous ergodic Mean Field Games systems in bounded domains with Neumann boundary conditions and local, possibly aggregative couplings. In particular we exploit the associated variational structure and search for constrained minimizers of a suitable functional. Depending on the growth of the coupling, we detect the existence of global minimizers in the mass subcritical and critical case, and of local minimizers in the mass supercritical case, notably up to the Sobolev critical case.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02744-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the existence of solutions to viscous ergodic Mean Field Games systems in bounded domains with Neumann boundary conditions and local, possibly aggregative couplings. In particular we exploit the associated variational structure and search for constrained minimizers of a suitable functional. Depending on the growth of the coupling, we detect the existence of global minimizers in the mass subcritical and critical case, and of local minimizers in the mass supercritical case, notably up to the Sobolev critical case.

遍历均值场博弈:索博列夫临界情况下局部最小值的存在性
我们研究了粘性遍历均场博弈系统在有界域中的解的存在性,该有界域具有诺伊曼边界条件和局部可能的聚集耦合。特别是,我们利用相关的变分结构,寻找合适函数的约束最小值。根据耦合的增长情况,我们发现在质量次临界和临界情况下存在全局最小值,在质量超临界情况下存在局部最小值,特别是在索博列夫临界情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信