{"title":"On the convergence of the Rhie–Chow stabilized Box method for the Stokes problem","authors":"G. Negrini, N. Parolini, M. Verani","doi":"10.1002/fld.5295","DOIUrl":null,"url":null,"abstract":"<p>The finite volume method (FVM) is widely adopted in many different applications because of its built-in conservation properties, its ability to deal with arbitrary mesh and its computational efficiency. In this work, we consider the Rhie–Chow stabilized Box method (RCBM) for the approximation of the Stokes problem. The Box method (BM) is a piecewise linear Petrov–Galerkin formulation on the Voronoi dual mesh of a Delaunay triangulation, whereas the Rhie–Chow (RC) stabilization is a well known stabilization technique for FVM. The first part of the article provides a variational formulation of the RC stabilization and discusses the validity of crucial properties relevant for the well-posedness and convergence of RCBM. Moreover, a numerical exploration of the convergence properties of the method on 2D and 3D test cases is presented. The last part of the article considers the theoretically justification of the well-posedness of RCBM and the experimentally observed convergence rates. This latter justification hinges upon suitable assumptions, whose validity is numerically explored.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5295","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The finite volume method (FVM) is widely adopted in many different applications because of its built-in conservation properties, its ability to deal with arbitrary mesh and its computational efficiency. In this work, we consider the Rhie–Chow stabilized Box method (RCBM) for the approximation of the Stokes problem. The Box method (BM) is a piecewise linear Petrov–Galerkin formulation on the Voronoi dual mesh of a Delaunay triangulation, whereas the Rhie–Chow (RC) stabilization is a well known stabilization technique for FVM. The first part of the article provides a variational formulation of the RC stabilization and discusses the validity of crucial properties relevant for the well-posedness and convergence of RCBM. Moreover, a numerical exploration of the convergence properties of the method on 2D and 3D test cases is presented. The last part of the article considers the theoretically justification of the well-posedness of RCBM and the experimentally observed convergence rates. This latter justification hinges upon suitable assumptions, whose validity is numerically explored.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.