HISOL: High-energy soliton dynamics enable ultrafast far-ultraviolet laser sources

IF 5.4 1区 物理与天体物理 Q1 OPTICS
APL Photonics Pub Date : 2024-05-13 DOI:10.1063/5.0206108
Christian Brahms, John C. Travers
{"title":"HISOL: High-energy soliton dynamics enable ultrafast far-ultraviolet laser sources","authors":"Christian Brahms, John C. Travers","doi":"10.1063/5.0206108","DOIUrl":null,"url":null,"abstract":"Ultrafast laser sources in the far ultraviolet (100–300 nm) have been the subject of intense experimental efforts for several decades, driven primarily by the requirements of advanced experiments in ultrafast science. Resonant dispersive wave emission from high-energy laser pulses undergoing soliton self-compression in a gas-filled hollow capillary fiber promises to meet several of these requirements for the first time, most importantly by combining wide-ranging wavelength tuneability with the generation of extremely short pulses. In this Perspective, we give an overview of this approach to ultrafast far-ultraviolet sources, including its historical origin and underlying physical mechanism, the state of the art and current challenges, and our view of potential applications both within and beyond ultrafast science.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"23 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0206108","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast laser sources in the far ultraviolet (100–300 nm) have been the subject of intense experimental efforts for several decades, driven primarily by the requirements of advanced experiments in ultrafast science. Resonant dispersive wave emission from high-energy laser pulses undergoing soliton self-compression in a gas-filled hollow capillary fiber promises to meet several of these requirements for the first time, most importantly by combining wide-ranging wavelength tuneability with the generation of extremely short pulses. In this Perspective, we give an overview of this approach to ultrafast far-ultraviolet sources, including its historical origin and underlying physical mechanism, the state of the art and current challenges, and our view of potential applications both within and beyond ultrafast science.
HISOL:高能孤子动力学实现超快远紫外激光源
几十年来,远紫外(100-300 nm)的超快激光源一直是实验研究的热点,这主要是受超快科学先进实验要求的驱动。高能激光脉冲在充满气体的中空毛细管光纤中进行孤子自压缩时产生的共振色散波发射有望首次满足上述几项要求,其中最重要的是,它将大范围波长可调谐性与产生极短脉冲相结合。在本《视角》中,我们将概述这种超快远紫外光源的方法,包括其历史渊源和基本物理机制、技术现状和当前挑战,以及我们对超快科学内外潜在应用的看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信