Pogorelov estimates for semi-convex solutions of 𝑘-curvature equations

IF 0.8 3区 数学 Q2 MATHEMATICS
Xiaojuan Chen, Qiang Tu, Ni Xiang
{"title":"Pogorelov estimates for semi-convex solutions of 𝑘-curvature equations","authors":"Xiaojuan Chen, Qiang Tu, Ni Xiang","doi":"10.1090/proc/16820","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-curvature equations <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma Subscript k Baseline left-parenthesis kappa left-bracket upper M Subscript u Baseline right-bracket right-parenthesis equals f left-parenthesis x comma u comma nabla u right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>κ</mml:mi> <mml:mo stretchy=\"false\">[</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>u</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇</mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma _k(\\kappa [M_u])=f(x,u,\\nabla u)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> subject to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis k plus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(k+1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-convex Dirichlet boundary data instead of affine Dirichlet data of Sheng, Urbas, and Wang [Duke Math. J. 123 (2004), pp. 235–264]. By using the crucial concavity inequality for Hessian operator of Lu [Calc. Var. Partial Differential Equations 62 (2023), p.23], we derive Pogorelov estimates of semi-convex admissible solutions for these <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-curvature equations.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16820","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider k k -curvature equations σ k ( κ [ M u ] ) = f ( x , u , u ) \sigma _k(\kappa [M_u])=f(x,u,\nabla u) subject to ( k + 1 ) (k+1) -convex Dirichlet boundary data instead of affine Dirichlet data of Sheng, Urbas, and Wang [Duke Math. J. 123 (2004), pp. 235–264]. By using the crucial concavity inequality for Hessian operator of Lu [Calc. Var. Partial Differential Equations 62 (2023), p.23], we derive Pogorelov estimates of semi-convex admissible solutions for these k k -curvature equations.

𝑘曲率方程半凸解的波格雷洛夫估计值
本文考虑 k k -曲率方程 σ k ( κ [ M u ] ) = f ( x , u ,∇ u ) \sigma _k(\kappa [M_u])=f(x,u,\nabla u) subject to ( k + 1 ) (k+1) -convex Dirichlet boundary data instead of affine Dirichlet data of Sheng, Urbas, and Wang [Duke Math. J 123 (2004)].123 (2004), pp.]通过使用 Lu [Calc. Var. Partial Differential Equations 62 (2023), p.23] 的 Hessian 算子的关键凹不等式,我们推导出了这些 k k -曲率方程的半凸可纳解的 Pogorelov 估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信