{"title":"Pogorelov estimates for semi-convex solutions of 𝑘-curvature equations","authors":"Xiaojuan Chen, Qiang Tu, Ni Xiang","doi":"10.1090/proc/16820","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-curvature equations <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma Subscript k Baseline left-parenthesis kappa left-bracket upper M Subscript u Baseline right-bracket right-parenthesis equals f left-parenthesis x comma u comma nabla u right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>κ</mml:mi> <mml:mo stretchy=\"false\">[</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>u</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇</mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma _k(\\kappa [M_u])=f(x,u,\\nabla u)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> subject to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis k plus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(k+1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-convex Dirichlet boundary data instead of affine Dirichlet data of Sheng, Urbas, and Wang [Duke Math. J. 123 (2004), pp. 235–264]. By using the crucial concavity inequality for Hessian operator of Lu [Calc. Var. Partial Differential Equations 62 (2023), p.23], we derive Pogorelov estimates of semi-convex admissible solutions for these <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-curvature equations.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16820","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider kk-curvature equations σk(κ[Mu])=f(x,u,∇u)\sigma _k(\kappa [M_u])=f(x,u,\nabla u) subject to (k+1)(k+1)-convex Dirichlet boundary data instead of affine Dirichlet data of Sheng, Urbas, and Wang [Duke Math. J. 123 (2004), pp. 235–264]. By using the crucial concavity inequality for Hessian operator of Lu [Calc. Var. Partial Differential Equations 62 (2023), p.23], we derive Pogorelov estimates of semi-convex admissible solutions for these kk-curvature equations.
本文考虑 k k -曲率方程 σ k ( κ [ M u ] ) = f ( x , u ,∇ u ) \sigma _k(\kappa [M_u])=f(x,u,\nabla u) subject to ( k + 1 ) (k+1) -convex Dirichlet boundary data instead of affine Dirichlet data of Sheng, Urbas, and Wang [Duke Math. J 123 (2004)].123 (2004), pp.]通过使用 Lu [Calc. Var. Partial Differential Equations 62 (2023), p.23] 的 Hessian 算子的关键凹不等式,我们推导出了这些 k k -曲率方程的半凸可纳解的 Pogorelov 估计值。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.