Computational fluid–structure analysis of the impact of leaflet thickness and protrusion height on the flutter phenomenon in aortic valve bioprostheses
Matheus Carvalho Barbosa Costa, Saulo de Freitas Gonçalves, João Victor Curado Fleury, Mário Luis Ferreira da Silva, Rudolf Huebner, Artur Henrique de Freitas Avelar
{"title":"Computational fluid–structure analysis of the impact of leaflet thickness and protrusion height on the flutter phenomenon in aortic valve bioprostheses","authors":"Matheus Carvalho Barbosa Costa, Saulo de Freitas Gonçalves, João Victor Curado Fleury, Mário Luis Ferreira da Silva, Rudolf Huebner, Artur Henrique de Freitas Avelar","doi":"10.1007/s11012-024-01809-y","DOIUrl":null,"url":null,"abstract":"<div><p>Although it is associated with the low lifetime of aortic valve bioprostheses, flutter has little been studied in the dynamics of these valves. To improve the understanding of flutter in bioprosthetic leaflets, the present work evaluates the effect of leaflet thickness and protrusion height on flutter parameters through the computational fluid–structure interaction. A bioprosthesis geometry, based on a geometric model available in the literature, and a simplified fluid domain were developed. As a boundary condition, a parabolic velocity profile was applied at the inlet, outflow at the outlet, and fixed support at the sides of the leaflets. The valve cusps were considered with linear elastic and isotropic mechanical behavior, while the blood was modeled as a Newtonian fluid. Turbulence was modeled according to the k-<span>\\(\\omega \\)</span> SST model. The numerical results showed that, due to the occurrence of leaflet oscillations, both fluid dynamic quantities, such as pressure, velocity, and turbulence intensity, and solid domain quantities, such as stress and strain, exhibited an irregular and oscillatory behavior. Furthermore, the radial displacements of the leaflets were asynchronous, and the phase difference between the leaflets increased with increasing thickness. The frequencies ranged from 28.3 to 36.7 Hz, while the amplitudes ranged from 5.34 to 6.53 mm, where the valve with the lowest protrusion height did not develop flutter</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 5","pages":"685 - 701"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01809-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Although it is associated with the low lifetime of aortic valve bioprostheses, flutter has little been studied in the dynamics of these valves. To improve the understanding of flutter in bioprosthetic leaflets, the present work evaluates the effect of leaflet thickness and protrusion height on flutter parameters through the computational fluid–structure interaction. A bioprosthesis geometry, based on a geometric model available in the literature, and a simplified fluid domain were developed. As a boundary condition, a parabolic velocity profile was applied at the inlet, outflow at the outlet, and fixed support at the sides of the leaflets. The valve cusps were considered with linear elastic and isotropic mechanical behavior, while the blood was modeled as a Newtonian fluid. Turbulence was modeled according to the k-\(\omega \) SST model. The numerical results showed that, due to the occurrence of leaflet oscillations, both fluid dynamic quantities, such as pressure, velocity, and turbulence intensity, and solid domain quantities, such as stress and strain, exhibited an irregular and oscillatory behavior. Furthermore, the radial displacements of the leaflets were asynchronous, and the phase difference between the leaflets increased with increasing thickness. The frequencies ranged from 28.3 to 36.7 Hz, while the amplitudes ranged from 5.34 to 6.53 mm, where the valve with the lowest protrusion height did not develop flutter
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.