{"title":"Innovative modeling of monolayer puckered arsenene: Bridging quantum mechanics and finite element analysis","authors":"Peyman Aghdasi, Shayesteh Yousefi, Reza Ansari","doi":"10.1002/sia.7319","DOIUrl":null,"url":null,"abstract":"Current study presents a novel hybrid approach combining finite element modeling and density functional theory calculations to investigate the mechanical properties of monolayer puckered arsenene. The multiscale analysis in this study leverages finite element analysis as a distinctive approach, complementing the nano‐scale capabilities of density functional theory and molecular dynamics by overcoming limitations faced by these two methods in representing complex scenarios. Furthermore, finite element analysis demonstrates computational efficiency for larger structures, making it suitable for systems where atomistic simulations may be impractical. This hybrid methodology offers a unique framework for accurately predicting key properties, including elastic modulus and buckling force, by synergistically integrating the strengths of both computational techniques. In addition to demonstrating the effectiveness of our approach in accurately capturing material behavior, our findings shed light on fundamental aspects of nanoscale mechanics, with implications for various applications in nanotechnology, materials science, and structural engineering. By providing a deeper understanding of the mechanical response of 2D materials, our research contributes to advancing the field of nanoscale materials engineering and informs the design of innovative nanostructures with tailored mechanical properties.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7319","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current study presents a novel hybrid approach combining finite element modeling and density functional theory calculations to investigate the mechanical properties of monolayer puckered arsenene. The multiscale analysis in this study leverages finite element analysis as a distinctive approach, complementing the nano‐scale capabilities of density functional theory and molecular dynamics by overcoming limitations faced by these two methods in representing complex scenarios. Furthermore, finite element analysis demonstrates computational efficiency for larger structures, making it suitable for systems where atomistic simulations may be impractical. This hybrid methodology offers a unique framework for accurately predicting key properties, including elastic modulus and buckling force, by synergistically integrating the strengths of both computational techniques. In addition to demonstrating the effectiveness of our approach in accurately capturing material behavior, our findings shed light on fundamental aspects of nanoscale mechanics, with implications for various applications in nanotechnology, materials science, and structural engineering. By providing a deeper understanding of the mechanical response of 2D materials, our research contributes to advancing the field of nanoscale materials engineering and informs the design of innovative nanostructures with tailored mechanical properties.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.