{"title":"Fluorescent Membrane Probes Obey the Israelachvili Rules","authors":"Felix Bayard, Stefan Matile","doi":"10.1002/hlca.202400062","DOIUrl":null,"url":null,"abstract":"<p>When developing fluorescent membrane probes, we naturally tend to focus on the fluorophore itself. In this study, we show that sometimes it can be beneficial to shift attention from the center to the periphery, to maximize multiple interfacing with complex changing environments. Palmitylation for hydrophobic interfacing and glutamate dendrons for hydrophilic interfacing are combined to improve the performance of fluorescent flipper probes. We show that to increase performance in membranes, solubility in water is important, and to increase solubility in water, we increase the hydrophobicity of the flipper probe. These seemingly paradoxical measures are taken to satisfy the <i>Israelachvili</i> rules. They state that only inverted cone amphiphiles form soluble micelles in water, while inverted micelles from cone shaped amphiphiles precipitate into hexagonal 1 supramolecular polymers, and the intermediate cylindrical amphiphiles show intermediate behavior dominated by bilayers and lamellar precipitates. The normal micelles obtained from inverted cone flipper amphiphiles prevent precipitation and prepare for efficient transfer into the lipid bilayer membranes. The results are flippers that break all records set by the 2016 original with regard to effective brightness, responsiveness to membrane order, anchoring in disordered membranes, partitioning into membranes of high order, and stable labeling of membranes of interest. The lessons learned confirm the obvious: The <i>Israelachvili</i> rules apply also to fluorescent membrane probes. They promise literally bright perspectives for fluorescent membrane probes.</p>","PeriodicalId":12842,"journal":{"name":"Helvetica Chimica Acta","volume":"107 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hlca.202400062","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helvetica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hlca.202400062","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
When developing fluorescent membrane probes, we naturally tend to focus on the fluorophore itself. In this study, we show that sometimes it can be beneficial to shift attention from the center to the periphery, to maximize multiple interfacing with complex changing environments. Palmitylation for hydrophobic interfacing and glutamate dendrons for hydrophilic interfacing are combined to improve the performance of fluorescent flipper probes. We show that to increase performance in membranes, solubility in water is important, and to increase solubility in water, we increase the hydrophobicity of the flipper probe. These seemingly paradoxical measures are taken to satisfy the Israelachvili rules. They state that only inverted cone amphiphiles form soluble micelles in water, while inverted micelles from cone shaped amphiphiles precipitate into hexagonal 1 supramolecular polymers, and the intermediate cylindrical amphiphiles show intermediate behavior dominated by bilayers and lamellar precipitates. The normal micelles obtained from inverted cone flipper amphiphiles prevent precipitation and prepare for efficient transfer into the lipid bilayer membranes. The results are flippers that break all records set by the 2016 original with regard to effective brightness, responsiveness to membrane order, anchoring in disordered membranes, partitioning into membranes of high order, and stable labeling of membranes of interest. The lessons learned confirm the obvious: The Israelachvili rules apply also to fluorescent membrane probes. They promise literally bright perspectives for fluorescent membrane probes.
期刊介绍:
Helvetica Chimica Acta, founded by the Swiss Chemical Society in 1917, is a monthly multidisciplinary journal dedicated to the dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences, where molecular aspects are key to the findings. Helvetica Chimica Acta is committed to the publication of original, high quality papers at the frontier of scientific research. All contributions will be peer reviewed with the highest possible standards and published within 3 months of receipt, with no restriction on the length of the papers and in full color.