{"title":"Interface‐Driven DNA/Metal–Organic Framework Hybrids for Biosensing and Biomedical Applications","authors":"Zhaoyu Han, Zhenglian Li, Biwu Liu","doi":"10.1002/ppsc.202400039","DOIUrl":null,"url":null,"abstract":"Metal–organic frameworks (MOFs) have emerged as promising materials for biosensing and biomedical applications due to their exceptional structural properties and tunable functionalities. Integrating functional DNA with MOFs offers numerous advantages, including enhanced colloidal stability, target‐induced signal amplification, improved cellular uptake, and controlled drug release. This focused review aims to highlight key insights into the DNA–MOF interface to facilitate the design and application of these conjugates. A succinct summary of the interactions between DNA and MOFs, covering both noncovalent adsorption and covalent conjugation is provided. Moreover, recent advancements in utilizing DNA–MOF conjugates in biosensors, with a specific emphasis on fluorescent and electrochemical sensing are discussed. Additionally, applications in bioimaging, controlled drug delivery, and nucleic acid delivery are explored. Finally, the limitations of existing designs and provide insightful perspectives for the future development of DNA–MOFs, aiming to expedite their integration and impact in the realm of biomedical applications are addressed.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"68 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400039","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal–organic frameworks (MOFs) have emerged as promising materials for biosensing and biomedical applications due to their exceptional structural properties and tunable functionalities. Integrating functional DNA with MOFs offers numerous advantages, including enhanced colloidal stability, target‐induced signal amplification, improved cellular uptake, and controlled drug release. This focused review aims to highlight key insights into the DNA–MOF interface to facilitate the design and application of these conjugates. A succinct summary of the interactions between DNA and MOFs, covering both noncovalent adsorption and covalent conjugation is provided. Moreover, recent advancements in utilizing DNA–MOF conjugates in biosensors, with a specific emphasis on fluorescent and electrochemical sensing are discussed. Additionally, applications in bioimaging, controlled drug delivery, and nucleic acid delivery are explored. Finally, the limitations of existing designs and provide insightful perspectives for the future development of DNA–MOFs, aiming to expedite their integration and impact in the realm of biomedical applications are addressed.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.