Deducing neighborhoods of classes from a fitted model

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Alexander Gerharz, Andreas Groll, Gunther Schauberger
{"title":"Deducing neighborhoods of classes from a fitted model","authors":"Alexander Gerharz,&nbsp;Andreas Groll,&nbsp;Gunther Schauberger","doi":"10.1007/s10182-024-00502-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, a new kind of interpretable machine learning method is presented, which can help to understand the partition of the feature space into predicted classes in a classification model using quantile shifts, and this way make the underlying statistical or machine learning model more trustworthy. Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed. By comparing the predictions before and after the shifts, under certain conditions the observed changes in the predictions can be interpreted as neighborhoods of the classes with regard to the shifted features. Chord diagrams are used to visualize the observed changes. For illustration, this quantile shift method (QSM) is applied to an artificial example with medical labels and a real data example.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-024-00502-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-024-00502-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a new kind of interpretable machine learning method is presented, which can help to understand the partition of the feature space into predicted classes in a classification model using quantile shifts, and this way make the underlying statistical or machine learning model more trustworthy. Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed. By comparing the predictions before and after the shifts, under certain conditions the observed changes in the predictions can be interpreted as neighborhoods of the classes with regard to the shifted features. Chord diagrams are used to visualize the observed changes. For illustration, this quantile shift method (QSM) is applied to an artificial example with medical labels and a real data example.

Abstract Image

从拟合模型中推断类别邻域
本文提出了一种新的可解释机器学习方法,它可以帮助理解分类模型中利用量子位移将特征空间划分为预测类别的过程,从而使底层统计或机器学习模型更加可信。基本上,该方法使用真实数据点(或特定的兴趣点),并观察在稍微提高或降低特定特征后预测结果的变化。通过比较移动前后的预测结果,在某些条件下,观察到的预测变化可以解释为与移动特征相关的类别邻近。弦线图用于直观显示观察到的变化。为便于说明,我们将这种量子位移方法(QSM)应用于一个带有医疗标签的人工示例和一个真实数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信