Hausdorff dimension of the Cartesian product of limsup sets in Diophantine approximation

IF 1.2 2区 数学 Q1 MATHEMATICS
Baowei Wang, Jun Wu
{"title":"Hausdorff dimension of the Cartesian product of limsup sets in Diophantine approximation","authors":"Baowei Wang, Jun Wu","doi":"10.1090/tran/9136","DOIUrl":null,"url":null,"abstract":"<p>The metric theory of limsup sets is the main topic in metric Diophantine approximation. A very simple observation by Erdös shows the dimension of the Cartesian product of two sets of Liouville numbers is 1. To disclose the mystery hidden there, we consider and present a general principle for the Hausdorff dimension of the Cartesian product of limsup sets. As an application of our general principle, it is found that <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"dimension Subscript script upper H Baseline upper W left-parenthesis psi right-parenthesis times midline-horizontal-ellipsis times upper W left-parenthesis psi right-parenthesis equals d minus 1 plus dimension Subscript script upper H Baseline upper W left-parenthesis psi right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>W</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>×<!-- × --></mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>×<!-- × --></mml:mo> <mml:mi>W</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>d</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>W</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\dim _{\\mathcal H}W(\\psi )\\times \\cdots \\times W(\\psi )=d-1+\\dim _{\\mathcal H}W(\\psi ) \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W left-parenthesis psi right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>W</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">W(\\psi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the set of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi\"> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-well approximable points in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi colon double-struck upper N right-arrow double-struck upper R Superscript plus\"> <mml:semantics> <mml:mrow> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo>:</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\psi : \\mathbb {N}\\to \\mathbb {R}^+</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a positive non-increasing function. Even this concrete case was never observed before. Our result can also be compared with Marstrand’s famous inequality on the dimension of the Cartesian product of general sets.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"33 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9136","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The metric theory of limsup sets is the main topic in metric Diophantine approximation. A very simple observation by Erdös shows the dimension of the Cartesian product of two sets of Liouville numbers is 1. To disclose the mystery hidden there, we consider and present a general principle for the Hausdorff dimension of the Cartesian product of limsup sets. As an application of our general principle, it is found that dim H W ( ψ ) × × W ( ψ ) = d 1 + dim H W ( ψ ) \begin{equation*} \dim _{\mathcal H}W(\psi )\times \cdots \times W(\psi )=d-1+\dim _{\mathcal H}W(\psi ) \end{equation*} where W ( ψ ) W(\psi ) is the set of ψ \psi -well approximable points in R \mathbb {R} and ψ : N R + \psi : \mathbb {N}\to \mathbb {R}^+ is a positive non-increasing function. Even this concrete case was never observed before. Our result can also be compared with Marstrand’s famous inequality on the dimension of the Cartesian product of general sets.

Diophantine approximation 中 limsup 集笛卡尔积的 Hausdorff 维度
极限集的度量理论是度量 Diophantine 近似的主要课题。厄尔多斯的一个非常简单的观察结果表明,两个刘维尔数集的笛卡尔积的维数是 1。为了揭示其中隐藏的奥秘,我们考虑并提出了关于跛上集的笛卡尔积的豪斯多夫维数的一般原理。作为我们一般原理的应用,我们发现 dim H W ( ψ ) × ⋯ × W ( ψ ) = d - 1 + dim H W ( ψ ) (begin{equation*})。\dim _{\mathcal H}W(\psi )\times \cdots \times W(\psi )=d-1+\dim _{\mathcal H}W(\psi ) \end{equation*} 其中 W ( ψ ) W(\psi ) 是 R \mathbb {R} 和 ψ 中 ψ \psi -well approximable points 的集合: N → R + \psi :\到 \mathbb {R}^+ 是一个正的非递增函数。即使是这种具体情况,以前也从未观察到过。我们的结果还可以与马斯特兰关于一般集合的笛卡尔积的维数的著名不等式相比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信