{"title":"Hausdorff dimension of the Cartesian product of limsup sets in Diophantine approximation","authors":"Baowei Wang, Jun Wu","doi":"10.1090/tran/9136","DOIUrl":null,"url":null,"abstract":"<p>The metric theory of limsup sets is the main topic in metric Diophantine approximation. A very simple observation by Erdös shows the dimension of the Cartesian product of two sets of Liouville numbers is 1. To disclose the mystery hidden there, we consider and present a general principle for the Hausdorff dimension of the Cartesian product of limsup sets. As an application of our general principle, it is found that <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"dimension Subscript script upper H Baseline upper W left-parenthesis psi right-parenthesis times midline-horizontal-ellipsis times upper W left-parenthesis psi right-parenthesis equals d minus 1 plus dimension Subscript script upper H Baseline upper W left-parenthesis psi right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo><!-- --></mml:mo> <mml:mi>W</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>×<!-- × --></mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>×<!-- × --></mml:mo> <mml:mi>W</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>d</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo><!-- --></mml:mo> <mml:mi>W</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\dim _{\\mathcal H}W(\\psi )\\times \\cdots \\times W(\\psi )=d-1+\\dim _{\\mathcal H}W(\\psi ) \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W left-parenthesis psi right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>W</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">W(\\psi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the set of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi\"> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-well approximable points in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi colon double-struck upper N right-arrow double-struck upper R Superscript plus\"> <mml:semantics> <mml:mrow> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo>:</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\psi : \\mathbb {N}\\to \\mathbb {R}^+</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a positive non-increasing function. Even this concrete case was never observed before. Our result can also be compared with Marstrand’s famous inequality on the dimension of the Cartesian product of general sets.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"33 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9136","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The metric theory of limsup sets is the main topic in metric Diophantine approximation. A very simple observation by Erdös shows the dimension of the Cartesian product of two sets of Liouville numbers is 1. To disclose the mystery hidden there, we consider and present a general principle for the Hausdorff dimension of the Cartesian product of limsup sets. As an application of our general principle, it is found that dimHW(ψ)×⋯×W(ψ)=d−1+dimHW(ψ)\begin{equation*} \dim _{\mathcal H}W(\psi )\times \cdots \times W(\psi )=d-1+\dim _{\mathcal H}W(\psi ) \end{equation*} where W(ψ)W(\psi ) is the set of ψ\psi-well approximable points in R\mathbb {R} and ψ:N→R+\psi : \mathbb {N}\to \mathbb {R}^+ is a positive non-increasing function. Even this concrete case was never observed before. Our result can also be compared with Marstrand’s famous inequality on the dimension of the Cartesian product of general sets.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.