{"title":"Moments and asymptotics for a class of SPDEs with space-time white noise","authors":"Le Chen, Yuhui Guo, Jian Song","doi":"10.1090/tran/9138","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider the nonlinear stochastic partial differential equation of fractional order in both space and time variables with constant initial condition: <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis partial-differential Subscript t Superscript beta Baseline plus StartFraction nu Over 2 EndFraction left-parenthesis negative normal upper Delta right-parenthesis Superscript alpha slash 2 Baseline right-parenthesis u left-parenthesis t comma x right-parenthesis equals upper I Subscript t Superscript gamma Baseline left-bracket lamda u left-parenthesis t comma x right-parenthesis ModifyingAbove upper W With dot left-parenthesis t comma x right-parenthesis right-bracket t greater-than 0 comma x element-of double-struck upper R Superscript d Baseline comma\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:msubsup> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> </mml:mrow> </mml:msubsup> <mml:mo>+</mml:mo> <mml:mstyle displaystyle=\"true\" scriptlevel=\"0\"> <mml:mfrac> <mml:mi>ν<!-- ν --></mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mstyle> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mspace width=\"mediummathspace\" /> <mml:msubsup> <mml:mi>I</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mover> <mml:mi>W</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>]</mml:mo> </mml:mrow> <mml:mspace width=\"1em\" /> <mml:mi>t</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mspace width=\"mediummathspace\" /> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\left (\\partial ^{\\beta }_t+\\dfrac {\\nu }{2}\\left (-\\Delta \\right )^{\\alpha / 2}\\right ) u(t, x) = \\: I_{t}^{\\gamma }\\left [\\lambda u(t, x) \\dot {W}(t, x)\\right ] \\quad t>0,\\: x\\in \\mathbb {R}^d, \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> with constants <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda not-equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lambda \\ne 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\nu >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential Subscript t Superscript beta\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\partial ^{\\beta }_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the <italic>Caputo fractional derivative</italic> of order <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta element-of left-parenthesis 0 comma 2 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta \\in (0,2]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I Subscript t Superscript gamma\"> <mml:semantics> <mml:msubsup> <mml:mi>I</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">I_{t}^{\\gamma }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> refers to the <italic>Riemann-Liouville integral</italic> of order <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma greater-than-or-equal-to 0\"> <mml:semantics> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\gamma \\ge 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative normal upper Delta right-parenthesis Superscript alpha slash 2\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\left (-\\Delta \\right )^{\\alpha /2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the standard <italic>fractional/power of Laplacian</italic> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We concentrate on the scenario where the noise <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper W With dot\"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>W</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\dot {W}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the space-time white noise. The existence and uniqueness of solution in the Itô-Skorohod sense is obtained under Dalang’s condition. We obtain explicit formulas for both the second moment and the second moment Lyapunov exponent. We derive the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-th moment upper bounds and find the matching lower bounds. Our results solve a large class of conjectures regarding the order of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-th moment Lyapunov exponents. In particular, by letting <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta = 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha = 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\gamma = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 1\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d = 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we confirm the following standing conjecture for the stochastic wave equation: <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout 1st Row StartFraction 1 Over t EndFraction log double-struck upper E left-bracket StartAbsoluteValue u left-parenthesis t comma x right-parenthesis EndAbsoluteValue Superscript p Baseline right-bracket equivalent-to p Superscript 3 slash 2 Baseline comma for p greater-than-or-equal-to 2 as t right-arrow normal infinity period EndLayout\"> <mml:semantics> <mml:mtable columnalign=\"right left right left right left right left right left right left\" rowspacing=\"3pt\" columnspacing=\"0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em\" side=\"left\" displaystyle=\"true\"> <mml:mtr> <mml:mtd> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>t</mml:mi> </mml:mfrac> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">E</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo>≍<!-- ≍ --></mml:mo> <mml:msup> <mml:mi>p</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mspace width=\"1em\" /> <mml:mrow> <mml:mtext>for </mml:mtext> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:mtext> as </mml:mtext> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:mtext>.</mml:mtext> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> <mml:annotation encoding=\"application/x-tex\">\\begin{align*} \\frac {1}{t}\\log \\mathbb {E}[|u(t,x)|^p ] \\asymp p^{3/2}, \\quad \\text {for $p\\ge 2$ as $t\\to \\infty $.} \\end{align*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> The method for the lower bounds is inspired by a recent work of Hu and Wang, where the authors focus on the space-time colored Gaussian noise case.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we consider the nonlinear stochastic partial differential equation of fractional order in both space and time variables with constant initial condition: (∂tβ+ν2(−Δ)α/2)u(t,x)=Itγ[λu(t,x)W˙(t,x)]t>0,x∈Rd,\begin{equation*} \left (\partial ^{\beta }_t+\dfrac {\nu }{2}\left (-\Delta \right )^{\alpha / 2}\right ) u(t, x) = \: I_{t}^{\gamma }\left [\lambda u(t, x) \dot {W}(t, x)\right ] \quad t>0,\: x\in \mathbb {R}^d, \end{equation*} with constants λ≠0\lambda \ne 0 and ν>0\nu >0, where ∂tβ\partial ^{\beta }_t is the Caputo fractional derivative of order β∈(0,2]\beta \in (0,2], ItγI_{t}^{\gamma } refers to the Riemann-Liouville integral of order γ≥0\gamma \ge 0, and (−Δ)α/2\left (-\Delta \right )^{\alpha /2} is the standard fractional/power of Laplacian with α>0\alpha >0. We concentrate on the scenario where the noise W˙\dot {W} is the space-time white noise. The existence and uniqueness of solution in the Itô-Skorohod sense is obtained under Dalang’s condition. We obtain explicit formulas for both the second moment and the second moment Lyapunov exponent. We derive the pp-th moment upper bounds and find the matching lower bounds. Our results solve a large class of conjectures regarding the order of the pp-th moment Lyapunov exponents. In particular, by letting β=2\beta = 2, α=2\alpha = 2, γ=0\gamma = 0, and d=1d = 1, we confirm the following standing conjecture for the stochastic wave equation: 1tlogE[|u(t,x)|p]≍p3/2,for p≥2 as t→∞.\begin{align*} \frac {1}{t}\log \mathbb {E}[|u(t,x)|^p ] \asymp p^{3/2}, \quad \text {for $p\ge 2$ as $t\to \infty $.} \end{align*} The method for the lower bounds is inspired by a recent work of Hu and Wang, where the authors focus on the space-time colored Gaussian noise case.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.