Moments and asymptotics for a class of SPDEs with space-time white noise

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Le Chen, Yuhui Guo, Jian Song
{"title":"Moments and asymptotics for a class of SPDEs with space-time white noise","authors":"Le Chen, Yuhui Guo, Jian Song","doi":"10.1090/tran/9138","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider the nonlinear stochastic partial differential equation of fractional order in both space and time variables with constant initial condition: <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis partial-differential Subscript t Superscript beta Baseline plus StartFraction nu Over 2 EndFraction left-parenthesis negative normal upper Delta right-parenthesis Superscript alpha slash 2 Baseline right-parenthesis u left-parenthesis t comma x right-parenthesis equals upper I Subscript t Superscript gamma Baseline left-bracket lamda u left-parenthesis t comma x right-parenthesis ModifyingAbove upper W With dot left-parenthesis t comma x right-parenthesis right-bracket t greater-than 0 comma x element-of double-struck upper R Superscript d Baseline comma\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:msubsup> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> </mml:mrow> </mml:msubsup> <mml:mo>+</mml:mo> <mml:mstyle displaystyle=\"true\" scriptlevel=\"0\"> <mml:mfrac> <mml:mi>ν<!-- ν --></mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mstyle> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mspace width=\"mediummathspace\" /> <mml:msubsup> <mml:mi>I</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mover> <mml:mi>W</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>]</mml:mo> </mml:mrow> <mml:mspace width=\"1em\" /> <mml:mi>t</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mspace width=\"mediummathspace\" /> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\left (\\partial ^{\\beta }_t+\\dfrac {\\nu }{2}\\left (-\\Delta \\right )^{\\alpha / 2}\\right ) u(t, x) = \\: I_{t}^{\\gamma }\\left [\\lambda u(t, x) \\dot {W}(t, x)\\right ] \\quad t&gt;0,\\: x\\in \\mathbb {R}^d, \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> with constants <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda not-equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lambda \\ne 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\nu &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential Subscript t Superscript beta\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\partial ^{\\beta }_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the <italic>Caputo fractional derivative</italic> of order <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta element-of left-parenthesis 0 comma 2 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta \\in (0,2]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I Subscript t Superscript gamma\"> <mml:semantics> <mml:msubsup> <mml:mi>I</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">I_{t}^{\\gamma }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> refers to the <italic>Riemann-Liouville integral</italic> of order <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma greater-than-or-equal-to 0\"> <mml:semantics> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\gamma \\ge 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative normal upper Delta right-parenthesis Superscript alpha slash 2\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\left (-\\Delta \\right )^{\\alpha /2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the standard <italic>fractional/power of Laplacian</italic> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We concentrate on the scenario where the noise <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper W With dot\"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>W</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\dot {W}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the space-time white noise. The existence and uniqueness of solution in the Itô-Skorohod sense is obtained under Dalang’s condition. We obtain explicit formulas for both the second moment and the second moment Lyapunov exponent. We derive the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-th moment upper bounds and find the matching lower bounds. Our results solve a large class of conjectures regarding the order of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-th moment Lyapunov exponents. In particular, by letting <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta = 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha = 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\gamma = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 1\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d = 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we confirm the following standing conjecture for the stochastic wave equation: <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout 1st Row StartFraction 1 Over t EndFraction log double-struck upper E left-bracket StartAbsoluteValue u left-parenthesis t comma x right-parenthesis EndAbsoluteValue Superscript p Baseline right-bracket equivalent-to p Superscript 3 slash 2 Baseline comma for p greater-than-or-equal-to 2 as t right-arrow normal infinity period EndLayout\"> <mml:semantics> <mml:mtable columnalign=\"right left right left right left right left right left right left\" rowspacing=\"3pt\" columnspacing=\"0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em\" side=\"left\" displaystyle=\"true\"> <mml:mtr> <mml:mtd> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>t</mml:mi> </mml:mfrac> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">E</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo>≍<!-- ≍ --></mml:mo> <mml:msup> <mml:mi>p</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mspace width=\"1em\" /> <mml:mrow> <mml:mtext>for </mml:mtext> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:mtext> as </mml:mtext> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:mtext>.</mml:mtext> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> <mml:annotation encoding=\"application/x-tex\">\\begin{align*} \\frac {1}{t}\\log \\mathbb {E}[|u(t,x)|^p ] \\asymp p^{3/2}, \\quad \\text {for $p\\ge 2$ as $t\\to \\infty $.} \\end{align*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> The method for the lower bounds is inspired by a recent work of Hu and Wang, where the authors focus on the space-time colored Gaussian noise case.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the nonlinear stochastic partial differential equation of fractional order in both space and time variables with constant initial condition: ( t β + ν 2 ( Δ ) α / 2 ) u ( t , x ) = I t γ [ λ u ( t , x ) W ˙ ( t , x ) ] t > 0 , x R d , \begin{equation*} \left (\partial ^{\beta }_t+\dfrac {\nu }{2}\left (-\Delta \right )^{\alpha / 2}\right ) u(t, x) = \: I_{t}^{\gamma }\left [\lambda u(t, x) \dot {W}(t, x)\right ] \quad t>0,\: x\in \mathbb {R}^d, \end{equation*} with constants λ 0 \lambda \ne 0 and ν > 0 \nu >0 , where t β \partial ^{\beta }_t is the Caputo fractional derivative of order β ( 0 , 2 ] \beta \in (0,2] , I t γ I_{t}^{\gamma } refers to the Riemann-Liouville integral of order γ 0 \gamma \ge 0 , and ( Δ ) α / 2 \left (-\Delta \right )^{\alpha /2} is the standard fractional/power of Laplacian with α > 0 \alpha >0 . We concentrate on the scenario where the noise W ˙ \dot {W} is the space-time white noise. The existence and uniqueness of solution in the Itô-Skorohod sense is obtained under Dalang’s condition. We obtain explicit formulas for both the second moment and the second moment Lyapunov exponent. We derive the p p -th moment upper bounds and find the matching lower bounds. Our results solve a large class of conjectures regarding the order of the p p -th moment Lyapunov exponents. In particular, by letting β = 2 \beta = 2 , α = 2 \alpha = 2 , γ = 0 \gamma = 0 , and d = 1 d = 1 , we confirm the following standing conjecture for the stochastic wave equation: 1 t log E [ | u ( t , x ) | p ] p 3 / 2 , for p 2 as t . \begin{align*} \frac {1}{t}\log \mathbb {E}[|u(t,x)|^p ] \asymp p^{3/2}, \quad \text {for $p\ge 2$ as $t\to \infty $.} \end{align*} The method for the lower bounds is inspired by a recent work of Hu and Wang, where the authors focus on the space-time colored Gaussian noise case.

一类具有时空白噪声的 SPDE 的矩和渐近线
在本文中,我们考虑了空间和时间变量中具有恒定初始条件的非线性随机分阶偏微分方程: ( ∂ t β + ν 2 ( - Δ ) α / 2 ) u ( t , x ) = I t γ [ λ u ( t , x ) W ˙ ( t , x ) ] t > 0 , x∈ R d , \begin{equation*}\(\partial ^{\beta }_t+\dfrac {\nu }{2}\left (-\Delta \right )^{\alpha / 2}\right ) u(t, x) =\: I_{t}^{\gamma }\left [\lambda u(t, x) \dot {W}(t, x)\right ] \quad t>0,\:x\in \mathbb {R}^d, \end{equation*} with constants λ ≠ 0 \lambda \ne 0 and ν > 0 \nu >0 , where ∂ t β \partial ^\{beta }_t is the Caputo fractional derivative of order β∈ ( 0 , 2 ) \in (0,2] , I t γ I_{t}^\{gamma } 指的是阶γ ≥ 0 \gamma \ge 0 的黎曼-柳维尔积分,而 ( - Δ ) α / 2 \left (-\Delta \right )^{alpha/2}是α > 0 \alpha >0 的标准分数/幂拉普拉奇。我们主要讨论噪声 W ˙\dot {W} 为时空白噪声的情况。在达朗条件下,我们得到了 Itô-Skorohod 意义上的解的存在性和唯一性。我们得到了第二矩和第二矩 Lyapunov 指数的明确公式。我们推导出了 p p -th 矩上限,并找到了匹配的下限。我们的结果解决了一大类关于第 p p -th 矩 Lyapunov 指数阶数的猜想。特别是,通过让 β = 2 \beta = 2 , α = 2 \alpha = 2 , γ = 0 \gamma = 0 , 以及 d = 1 d = 1 ,我们证实了以下关于随机波方程的长期猜想: 1 t log E [ | u ( t , x ) | p ] ≍ p 3 / 2 , for p ≥ 2 as t → ∞ . \开始\frac {1}{t}log \mathbb {E}[|u(t,x)|^p ] \asymp p^{3/2}, \quad \text {for $p\ge 2$ as $t\to \infty $.}.\end{align*} 下界方法的灵感来自 Hu 和 Wang 的一项最新研究,作者主要研究了时空彩色高斯噪声的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信