Hilbert’s tenth problem in anticyclotomic towers of number fields

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Anwesh Ray, Tom Weston
{"title":"Hilbert’s tenth problem in anticyclotomic towers of number fields","authors":"Anwesh Ray, Tom Weston","doi":"10.1090/tran/9147","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an imaginary quadratic field and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an odd prime which splits in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 1\"> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">E_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 2\"> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">E_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be elliptic curves over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G a l left-parenthesis upper K overbar slash upper K right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>Gal</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mover> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {Gal}(\\bar {K}/K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 1 left-bracket p right-bracket\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">E_1[p]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 2 left-bracket p right-bracket\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">E_2[p]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are isomorphic. We show that under certain explicit additional conditions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 1\"> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">E_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 2\"> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">E_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the anticyclotomic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-extension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript a n t i\"> <mml:semantics> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mi>anti</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">K_{\\operatorname {anti}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is integrally diophantine over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. When such conditions are satisfied, we deduce new cases of Hilbert’s tenth problem. In greater detail, the conditions imply that Hilbert’s tenth problem is unsolvable for all number fields that are contained in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript a n t i\"> <mml:semantics> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow> <mml:mi>anti</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">K_{\\operatorname {anti}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We illustrate our results by constructing an explicit example for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p equals 3\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p=3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K equals double-struck upper Q left-parenthesis StartRoot negative 5 EndRoot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msqrt> <mml:mo>−<!-- − --></mml:mo> <mml:mn>5</mml:mn> </mml:msqrt> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K=\\mathbb {Q}(\\sqrt {-5})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9147","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let K K be an imaginary quadratic field and p p be an odd prime which splits in K K . Let E 1 E_1 and E 2 E_2 be elliptic curves over K K such that the Gal ( K ¯ / K ) \operatorname {Gal}(\bar {K}/K) -modules E 1 [ p ] E_1[p] and E 2 [ p ] E_2[p] are isomorphic. We show that under certain explicit additional conditions on E 1 E_1 and E 2 E_2 , the anticyclotomic Z p \mathbb {Z}_p -extension K anti K_{\operatorname {anti}} of K K is integrally diophantine over K K . When such conditions are satisfied, we deduce new cases of Hilbert’s tenth problem. In greater detail, the conditions imply that Hilbert’s tenth problem is unsolvable for all number fields that are contained in K anti K_{\operatorname {anti}} . We illustrate our results by constructing an explicit example for p = 3 p=3 and K = Q ( 5 ) K=\mathbb {Q}(\sqrt {-5}) .

数域反周塔中的希尔伯特第十问题
让 K K 是一个虚二次域,p p 是一个奇素数,它在 K K 中分裂。让 E 1 E_1 和 E 2 E_2 是 K K 上的椭圆曲线,使得 Gal ( K ¯ / K ) operatorname {Gal}(\bar {K}/K) -模块 E 1 [ p ] E_1[p] 和 E 2 [ p ] E_2[p]是同构的。我们证明,在关于 E 1 E_1 和 E 2 E_2 的某些明确的附加条件下,K K 的反周 Z p \mathbb {Z}_p 扩展 K anti K_{\operatorname {anti}} 在 K K 上是积分二象性的。满足这些条件后,我们就能推导出希尔伯特第十问题的新情况。更详细地说,这些条件意味着希尔伯特第十问题对于所有包含在 K anti K_{\operatorname {anti}} 中的数域都是无解的。 .我们以 p = 3 p=3 和 K = Q ( - 5 ) K=\mathbb {Q}(\sqrt {-5}) 为例来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信