Sagar Sahu, Ravindra Kumar Pandey, Shiv Shankar Shukla, Bina Gidwani
{"title":"Spectrophotometric Method Development and Validation of Empagliflozin in Active Pharmaceutical Ingredient and Tablet Dosage Form","authors":"Sagar Sahu, Ravindra Kumar Pandey, Shiv Shankar Shukla, Bina Gidwani","doi":"10.1007/s10812-024-01734-8","DOIUrl":null,"url":null,"abstract":"<p>Empagliflozin, an inhibitor of SGLT-2, a sodium glucose co-transporter is found mainly in the proximal tubules of the nephronic components of the kidney. The assay of empagliflozin in its tablet form has been created using a unique, secure, and sensitive UV-spectrophotometric approach. During the development and validation of the method for the assay of empagliflozin, methanol was employed as the solvent. The maximum absorbance wavelength of the solution was determined by scanning in a UV spectrophotometer. At the specified wavelength; absorbance was measured using a variety of calibration standards. The linearity and range of the calibration curve of concentration vs. absorbance were computed. The accuracy, precision, limit of detection, limit of quantitation, and ruggedness of the analytical approach were among the metrics that were determined. A correlation coefficient of 0.999 indicated linearity within the concentration range 2–10 μg/mL. The maximum absorbance of empagliflozin in methanol was determined to be 238.5 nm. Recovery was estimated as per International Conference on Harmonization guidelines and was found to be as per the acceptance limits: 93.25%. The developed UV method was found to be precise with relative standard deviation less than 2%. The assessment of empagliflozin in its tablet formulation using a UV-spectrophotometric technique was determined to be both safe and helpful. The uniqueness of this research is based on a cost-efficient, time-saving, safe, easy, and successful approach for validating empagliflozin.</p>","PeriodicalId":609,"journal":{"name":"Journal of Applied Spectroscopy","volume":"91 2","pages":"405 - 410"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10812-024-01734-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Empagliflozin, an inhibitor of SGLT-2, a sodium glucose co-transporter is found mainly in the proximal tubules of the nephronic components of the kidney. The assay of empagliflozin in its tablet form has been created using a unique, secure, and sensitive UV-spectrophotometric approach. During the development and validation of the method for the assay of empagliflozin, methanol was employed as the solvent. The maximum absorbance wavelength of the solution was determined by scanning in a UV spectrophotometer. At the specified wavelength; absorbance was measured using a variety of calibration standards. The linearity and range of the calibration curve of concentration vs. absorbance were computed. The accuracy, precision, limit of detection, limit of quantitation, and ruggedness of the analytical approach were among the metrics that were determined. A correlation coefficient of 0.999 indicated linearity within the concentration range 2–10 μg/mL. The maximum absorbance of empagliflozin in methanol was determined to be 238.5 nm. Recovery was estimated as per International Conference on Harmonization guidelines and was found to be as per the acceptance limits: 93.25%. The developed UV method was found to be precise with relative standard deviation less than 2%. The assessment of empagliflozin in its tablet formulation using a UV-spectrophotometric technique was determined to be both safe and helpful. The uniqueness of this research is based on a cost-efficient, time-saving, safe, easy, and successful approach for validating empagliflozin.
期刊介绍:
Journal of Applied Spectroscopy reports on many key applications of spectroscopy in chemistry, physics, metallurgy, and biology. An increasing number of papers focus on the theory of lasers, as well as the tremendous potential for the practical applications of lasers in numerous fields and industries.