Mohd Arif, Saloni Sachdeva, Sherry Mangla, Prafulla Kumar Sahoo
{"title":"India’s cultural heritage: Air quality effects amidst COVID-19 lockdown and seasonal variability","authors":"Mohd Arif, Saloni Sachdeva, Sherry Mangla, Prafulla Kumar Sahoo","doi":"10.1007/s10874-024-09458-x","DOIUrl":null,"url":null,"abstract":"<div><p>India, one of the most dynamic ancient civilizations, possesses a multitude of historical artifacts, with 37 of its notable architectural structures recognized as UNESCO World Heritage Sites. Yet, the ever-changing climate, especially air pollution, expedites the natural deterioration of historic sites and diminishes their aesthetic appeal, causing socio-economic damage. With this in mind, the current study aims to offer a logical scientific foundation for the implications of air pollution, seasonal shifts, and COVID-19 on 14 significant historical places in India during the year 2019-20. Delhi, among the cities most severely affected by atmospheric pollution, recorded an alarming air quality index (AQI) of 102–141, which can intensify the risk of cultural sites to corrode and deteriorate. Analysis reveals that the winter season had elevated levels of NO<sub>2</sub> and particle pollution (PM<sub>2.5</sub>, PM<sub>10</sub>), whereas summer had the higher levels of O<sub>3</sub>. Throughout the 5-month lockdown period, ozone levels exhibited an elevation, contrasting with the reduction observed in other air parameters. Notably, there was a substantial 70% decrease in particulate matter concentration, which had previously remained stable over the course of the year. Variations in geographic locales and anthropogenic influences contribute significantly to the dose-response statistics, revealing an unprecedented elevation in corrosion risks to historical limestone and sandstone structures across target sites. Moreover, the research addresses available Governmental initiatives, and effective strategies designed to safeguard heritage sites against the corrosion and material degradation, offering a comprehensive exploration of protective measures. Thereby, the current research is centred on establishing a foundational understanding of the impact of air pollution on cultural heritage, utilizing a comparison to the year with the lowest air pollution levels, which can aid policymakers in enhancing risk management and implementing a robust national mandate for the preservation of cultural heritage sites against corrosion.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"81 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-024-09458-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
India, one of the most dynamic ancient civilizations, possesses a multitude of historical artifacts, with 37 of its notable architectural structures recognized as UNESCO World Heritage Sites. Yet, the ever-changing climate, especially air pollution, expedites the natural deterioration of historic sites and diminishes their aesthetic appeal, causing socio-economic damage. With this in mind, the current study aims to offer a logical scientific foundation for the implications of air pollution, seasonal shifts, and COVID-19 on 14 significant historical places in India during the year 2019-20. Delhi, among the cities most severely affected by atmospheric pollution, recorded an alarming air quality index (AQI) of 102–141, which can intensify the risk of cultural sites to corrode and deteriorate. Analysis reveals that the winter season had elevated levels of NO2 and particle pollution (PM2.5, PM10), whereas summer had the higher levels of O3. Throughout the 5-month lockdown period, ozone levels exhibited an elevation, contrasting with the reduction observed in other air parameters. Notably, there was a substantial 70% decrease in particulate matter concentration, which had previously remained stable over the course of the year. Variations in geographic locales and anthropogenic influences contribute significantly to the dose-response statistics, revealing an unprecedented elevation in corrosion risks to historical limestone and sandstone structures across target sites. Moreover, the research addresses available Governmental initiatives, and effective strategies designed to safeguard heritage sites against the corrosion and material degradation, offering a comprehensive exploration of protective measures. Thereby, the current research is centred on establishing a foundational understanding of the impact of air pollution on cultural heritage, utilizing a comparison to the year with the lowest air pollution levels, which can aid policymakers in enhancing risk management and implementing a robust national mandate for the preservation of cultural heritage sites against corrosion.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.