{"title":"Concentration of hitting times in Erdős-Rényi graphs","authors":"Andrea Ottolini, Stefan Steinerberger","doi":"10.1002/jgt.23119","DOIUrl":null,"url":null,"abstract":"<p>We consider Erdős-Rényi graphs <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $G(n,p)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>p</mi>\n <mo><</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $0\\lt p\\lt 1$</annotation>\n </semantics></math> fixed and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation> $n\\to \\infty $</annotation>\n </semantics></math> and study the expected number of steps, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mrow>\n <mi>w</mi>\n <mi>v</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${H}_{wv}$</annotation>\n </semantics></math>, that a random walk started in <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n </mrow>\n <annotation> $w$</annotation>\n </semantics></math> needs to first arrive in <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math>. A natural guess is that an Erdős-Rényi random graph is so homogeneous that it does not really distinguish between vertices and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mrow>\n <mi>w</mi>\n <mi>v</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>n</mi>\n </mrow>\n <annotation> ${H}_{wv}=(1+o(1))n$</annotation>\n </semantics></math>. Löwe-Terveer established a CLT for the Mean Starting Hitting Time suggesting <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mrow>\n <mi>w</mi>\n <mi>v</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>n</mi>\n <mo>±</mo>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <msqrt>\n <mi>n</mi>\n </msqrt>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${H}_{wv}=n\\pm {\\mathscr{O}}(\\sqrt{n})$</annotation>\n </semantics></math>. We prove the existence of a strong concentration phenomenon: <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mrow>\n <mi>w</mi>\n <mi>v</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${H}_{wv}$</annotation>\n </semantics></math> is given, up to a very small error of size <span></span><math>\n <semantics>\n <mrow>\n <mo>≲</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>log</mi>\n <mi>n</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mn>3</mn>\n <mo>∕</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>∕</mo>\n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n <annotation> $\\lesssim {(\\mathrm{log}n)}^{3\\unicode{x02215}2}\\unicode{x02215}\\sqrt{n}$</annotation>\n </semantics></math>, by an explicit simple formula involving only the total number of edges <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>E</mi>\n <mo>∣</mo>\n </mrow>\n <annotation> $| E| $</annotation>\n </semantics></math>, the degree <span></span><math>\n <semantics>\n <mrow>\n <mtext>deg</mtext>\n <mrow>\n <mo>(</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{deg}(v)$</annotation>\n </semantics></math> and the distance <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n <mo>,</mo>\n <mi>w</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $d(v,w)$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"245-262"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider Erdős-Rényi graphs for fixed and and study the expected number of steps, , that a random walk started in needs to first arrive in . A natural guess is that an Erdős-Rényi random graph is so homogeneous that it does not really distinguish between vertices and . Löwe-Terveer established a CLT for the Mean Starting Hitting Time suggesting . We prove the existence of a strong concentration phenomenon: is given, up to a very small error of size , by an explicit simple formula involving only the total number of edges , the degree and the distance .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .