Cutting a tree with subgraph complementation is hard, except for some small trees

Pub Date : 2024-05-09 DOI:10.1002/jgt.23112
Dhanyamol Antony, Sagartanu Pal, R. B. Sandeep, R. Subashini
{"title":"Cutting a tree with subgraph complementation is hard, except for some small trees","authors":"Dhanyamol Antony,&nbsp;Sagartanu Pal,&nbsp;R. B. Sandeep,&nbsp;R. Subashini","doi":"10.1002/jgt.23112","DOIUrl":null,"url":null,"abstract":"<p>For a graph property <span></span><math>\n <semantics>\n <mrow>\n <mi>Π</mi>\n </mrow>\n <annotation> ${\\rm{\\Pi }}$</annotation>\n </semantics></math>, Subgraph Complementation to <span></span><math>\n <semantics>\n <mrow>\n <mi>Π</mi>\n </mrow>\n <annotation> ${\\rm{\\Pi }}$</annotation>\n </semantics></math> is the problem to find whether there is a subset <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation> $S$</annotation>\n </semantics></math> of vertices of the input graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that modifying <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> by complementing the subgraph induced by <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation> $S$</annotation>\n </semantics></math> results in a graph satisfying the property <span></span><math>\n <semantics>\n <mrow>\n <mi>Π</mi>\n </mrow>\n <annotation> ${\\rm{\\Pi }}$</annotation>\n </semantics></math>. We prove that the problem of Subgraph Complementation to <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>-free graphs is NP-Complete, for <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> being a tree, except for 41 trees of at most 13 vertices (a graph is <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>-free if it does not contain any induced copies of <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>). This result, along with the four known polynomial-time solvable cases (when <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> is a path on at most four vertices), leaves behind 37 open cases. Further, we prove that these hard problems do not admit any subexponential-time algorithms, assuming the Exponential-Time Hypothesis. As an additional result, we obtain that Subgraph Complementation to paw-free graphs can be solved in polynomial-time.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph property Π ${\rm{\Pi }}$ , Subgraph Complementation to Π ${\rm{\Pi }}$ is the problem to find whether there is a subset S $S$ of vertices of the input graph G $G$ such that modifying G $G$ by complementing the subgraph induced by S $S$ results in a graph satisfying the property Π ${\rm{\Pi }}$ . We prove that the problem of Subgraph Complementation to T $T$ -free graphs is NP-Complete, for T $T$ being a tree, except for 41 trees of at most 13 vertices (a graph is T $T$ -free if it does not contain any induced copies of T $T$ ). This result, along with the four known polynomial-time solvable cases (when T $T$ is a path on at most four vertices), leaves behind 37 open cases. Further, we prove that these hard problems do not admit any subexponential-time algorithms, assuming the Exponential-Time Hypothesis. As an additional result, we obtain that Subgraph Complementation to paw-free graphs can be solved in polynomial-time.

分享
查看原文
用子图互补法切割一棵树是很难的,除非是一些小树
对于一个图的属性而言,"补全子图"(Subgraph Complementation to)是一个问题,即找出输入图中是否存在这样一个顶点子集,即通过补全由其诱导的子图来进行修改,从而得到一个满足该属性的图。我们证明,对于树状图而言,子图补全到-free 图的问题是 NP-Complete(NP-Complete)的,但顶点数最多为 13 的 41 棵树(如果一个图不包含任何"-free "的诱导副本,则该图为-free)除外。这一结果,加上已知的四种多项式时间可解情况(当最多四个顶点上有一条路径时),留下了 37 种未解情况。此外,我们还证明,假设存在指数时间假说,这些难题不存在任何亚指数时间算法。作为附加结果,我们还得到了无爪图的子图补全可以在多项式时间内求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信