Density of 3-critical signed graphs

Pub Date : 2024-05-12 DOI:10.1002/jgt.23117
Laurent Beaudou, Penny Haxell, Kathryn Nurse, Sagnik Sen, Zhouningxin Wang
{"title":"Density of 3-critical signed graphs","authors":"Laurent Beaudou,&nbsp;Penny Haxell,&nbsp;Kathryn Nurse,&nbsp;Sagnik Sen,&nbsp;Zhouningxin Wang","doi":"10.1002/jgt.23117","DOIUrl":null,"url":null,"abstract":"<p>We say that a signed graph is <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-<i>critical</i> if it is not <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorable but every one of its proper subgraphs is <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorable. Using the definition of colorability due to Naserasr, Wang, and Zhu that extends the notion of circular colorability, we prove that every 3-critical signed graph on <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices has at least <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <mn>3</mn>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mn>2</mn>\n </mfrac>\n </mrow>\n <annotation> $\\frac{3n-1}{2}$</annotation>\n </semantics></math> edges, and that this bound is asymptotically tight. It follows that every signed planar or projective-planar graph of girth at least 6 is (circular) 3-colorable, and for the projective-planar case, this girth condition is best possible. To prove our main result, we reformulate it in terms of the existence of a homomorphism to the signed graph <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>C</mi>\n <mn>3</mn>\n <mo>*</mo>\n </msubsup>\n </mrow>\n <annotation> ${C}_{3}^{* }$</annotation>\n </semantics></math>, which is the positive triangle augmented with a negative loop on each vertex.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We say that a signed graph is k $k$ -critical if it is not k $k$ -colorable but every one of its proper subgraphs is k $k$ -colorable. Using the definition of colorability due to Naserasr, Wang, and Zhu that extends the notion of circular colorability, we prove that every 3-critical signed graph on n $n$ vertices has at least 3 n 1 2 $\frac{3n-1}{2}$ edges, and that this bound is asymptotically tight. It follows that every signed planar or projective-planar graph of girth at least 6 is (circular) 3-colorable, and for the projective-planar case, this girth condition is best possible. To prove our main result, we reformulate it in terms of the existence of a homomorphism to the signed graph C 3 * ${C}_{3}^{* }$ , which is the positive triangle augmented with a negative loop on each vertex.

分享
查看原文
三临界有符号图形的密度
如果一个有符号图不是可着色的,但它的每一个适当子图都是可着色的,我们就说这个图是-临界的。利用 Naserasr、Wang 和 Zhu 所提出的可着色性定义扩展了圆形可着色性的概念,我们证明了每个顶点上的三临界有符号图都至少有边,而且这个约束是渐近紧密的。由此可见,每个周长至少为 6 的有符号平面图或投影平面图都是(循环)3-可着色的,而且对于投影平面图来说,这个周长条件是最好的。为了证明我们的主要结果,我们用有符号图的同态存在来重新表述,有符号图是在每个顶点上都有一个负循环的正三角形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信