Sharp threshold for embedding balanced spanning trees in random geometric graphs

Pub Date : 2024-05-09 DOI:10.1002/jgt.23106
Alberto Espuny Díaz, Lyuben Lichev, Dieter Mitsche, Alexandra Wesolek
{"title":"Sharp threshold for embedding balanced spanning trees in random geometric graphs","authors":"Alberto Espuny Díaz,&nbsp;Lyuben Lichev,&nbsp;Dieter Mitsche,&nbsp;Alexandra Wesolek","doi":"10.1002/jgt.23106","DOIUrl":null,"url":null,"abstract":"<p>A rooted tree is <i>balanced</i> if the degree of a vertex depends only on its distance to the root. In this paper we determine the sharp threshold for the appearance of a large family of balanced spanning trees in the random geometric graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>d</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{G}}(n,r,d)$</annotation>\n </semantics></math>. In particular, we find the sharp threshold for balanced binary trees. More generally, we show that <i>all</i> sequences of balanced trees with uniformly bounded degrees and height tending to infinity appear above a sharp threshold, and none of these appears below the same value. Our results hold more generally for geometric graphs satisfying a mild condition on the distribution of their vertex set, and we provide a polynomial time algorithm to find such trees.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A rooted tree is balanced if the degree of a vertex depends only on its distance to the root. In this paper we determine the sharp threshold for the appearance of a large family of balanced spanning trees in the random geometric graph G ( n , r , d ) ${\mathscr{G}}(n,r,d)$ . In particular, we find the sharp threshold for balanced binary trees. More generally, we show that all sequences of balanced trees with uniformly bounded degrees and height tending to infinity appear above a sharp threshold, and none of these appears below the same value. Our results hold more generally for geometric graphs satisfying a mild condition on the distribution of their vertex set, and we provide a polynomial time algorithm to find such trees.

分享
查看原文
在随机几何图中嵌入平衡生成树的锐阈值
如果一个顶点的度数只取决于它到根的距离,那么这棵有根树就是平衡的。在本文中,我们确定了在随机几何图形中出现平衡生成树大家族的尖锐阈值。特别是,我们找到了平衡二叉树的尖锐阈值。更一般地说,我们证明了所有度数均匀有界且高度趋于无穷大的平衡树序列都会出现在一个尖锐阈值之上,而没有一个序列会出现在同一值之下。我们的结果更普遍地适用于满足顶点集分布的温和条件的几何图形,我们还提供了一种多项式时间算法来寻找这样的树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信