{"title":"Turán number of the odd-ballooning of complete bipartite graphs","authors":"Xing Peng, Mengjie Xia","doi":"10.1002/jgt.23118","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>, the Turán number <span></span><math>\n <semantics>\n <mrow>\n <mtext>ex</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>L</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{ex}(n,L)$</annotation>\n </semantics></math> is the maximum possible number of edges in an <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-free graph. The study of Turán number of graphs is a central topic in extremal graph theory. Although the celebrated Erdős-Stone-Simonovits theorem gives the asymptotic value of <span></span><math>\n <semantics>\n <mrow>\n <mtext>ex</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>L</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{ex}(n,L)$</annotation>\n </semantics></math> for nonbipartite <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>, it is challenging in general to determine the exact value of <span></span><math>\n <semantics>\n <mrow>\n <mtext>ex</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>L</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{ex}(n,L)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mi>L</mi>\n <mo>)</mo>\n </mrow>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $\\chi (L)\\ge 3$</annotation>\n </semantics></math>. The odd-ballooning of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is a graph such that each edge of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is replaced by an odd cycle and all new vertices of odd cycles are distinct. Here the length of odd cycles is not necessarily equal. The exact value of Turán number of the odd-ballooning of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is previously known for <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> being a cycle, a path, a tree with assumptions, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{2,3}$</annotation>\n </semantics></math>. In this paper, we manage to obtain the exact value of Turán number of the odd-ballooning of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{s,t}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>≤</mo>\n <mi>s</mi>\n <mo>≤</mo>\n <mi>t</mi>\n </mrow>\n <annotation> $2\\le s\\le t$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>∉</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $(s,t)\\notin \\{(2,2),(2,3)\\}$</annotation>\n </semantics></math> and each odd cycle has length at least five.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 1","pages":"181-199"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a graph , the Turán number is the maximum possible number of edges in an -vertex -free graph. The study of Turán number of graphs is a central topic in extremal graph theory. Although the celebrated Erdős-Stone-Simonovits theorem gives the asymptotic value of for nonbipartite , it is challenging in general to determine the exact value of for . The odd-ballooning of is a graph such that each edge of is replaced by an odd cycle and all new vertices of odd cycles are distinct. Here the length of odd cycles is not necessarily equal. The exact value of Turán number of the odd-ballooning of is previously known for being a cycle, a path, a tree with assumptions, and . In this paper, we manage to obtain the exact value of Turán number of the odd-ballooning of with , where and each odd cycle has length at least five.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .