{"title":"Gallai-like characterization of strong cocomparability graphs","authors":"Jing Huang","doi":"10.1002/jgt.23113","DOIUrl":null,"url":null,"abstract":"<p>Strong cocomparability graphs are the reflexive graphs whose adjacency matrix can be rearranged by a simultaneous row and column permutation to avoid the submatrix with rows <span></span><math>\n <semantics>\n <mrow>\n <mn>01</mn>\n \n <mo>,</mo>\n \n <mn>10</mn>\n </mrow>\n <annotation> $01,10$</annotation>\n </semantics></math>. Strong cocomparability graphs form a subclass of cocomparability graphs (i.e., the complements of comparability graphs) and can be recognized in polynomial time. In his seminal paper, Gallai characterized cocomparability graphs in terms of a forbidden structure called asteroids. Gallai proved that cocomparability graphs are precisely those reflexive graphs which do not contain asteroids. In this paper, we give a characterization of strong cocomparability graphs which is analogous to Gallai's characterization for cocomparability graphs. We prove that strong cocomparability graphs are precisely those reflexive graphs which do not contain weak edge-asteroids (a weaker version of asteroids). Our characterization also leads to a polynomial time recognition algorithm for strong cocomparability graphs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 1","pages":"29-37"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23113","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Strong cocomparability graphs are the reflexive graphs whose adjacency matrix can be rearranged by a simultaneous row and column permutation to avoid the submatrix with rows . Strong cocomparability graphs form a subclass of cocomparability graphs (i.e., the complements of comparability graphs) and can be recognized in polynomial time. In his seminal paper, Gallai characterized cocomparability graphs in terms of a forbidden structure called asteroids. Gallai proved that cocomparability graphs are precisely those reflexive graphs which do not contain asteroids. In this paper, we give a characterization of strong cocomparability graphs which is analogous to Gallai's characterization for cocomparability graphs. We prove that strong cocomparability graphs are precisely those reflexive graphs which do not contain weak edge-asteroids (a weaker version of asteroids). Our characterization also leads to a polynomial time recognition algorithm for strong cocomparability graphs.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .