Application of microbial fuel cell-based biosensor in environmental monitoring – A critical review

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Cheng Liu, Liang Cheng, Hui Jia
{"title":"Application of microbial fuel cell-based biosensor in environmental monitoring – A critical review","authors":"Cheng Liu,&nbsp;Liang Cheng,&nbsp;Hui Jia","doi":"10.1002/elan.202400100","DOIUrl":null,"url":null,"abstract":"<p>Microbial Fuel Cells (MFCs) represent an innovative approach for transforming biomass energy directly into electricity, which showed great promise in various applications beyond energy generation and wastewater treatment. The use of MFCs as biosensors for in-situ and online monitoring has garnered increasing interest. These biosensors stand out for their compactness, ease of operation, affordability, and portability. They have proven effectively in the detection of various water quality indicators, including organic matter, nitrogen, heavy metals, pH levels, and dissolved oxygen. This comprehensive review aims to provide a critical analysis of the current research landscape and the latest advancements in MFC technology, with special emphasis on the challenges encountered in its application for wastewater and water quality monitoring. Moreover, strategies for performance improvement, such as the adoption of miniaturized structures, the exploration of innovative materials, and the application of mathematical modelling for analysis, are also discussed. The review also explores potential avenues for future research, especially in the realm of detecting mixed pollutants. Thus, it provides insightful perspectives on the evolving field of biosensor technology based on MFCs.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"36 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.202400100","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial Fuel Cells (MFCs) represent an innovative approach for transforming biomass energy directly into electricity, which showed great promise in various applications beyond energy generation and wastewater treatment. The use of MFCs as biosensors for in-situ and online monitoring has garnered increasing interest. These biosensors stand out for their compactness, ease of operation, affordability, and portability. They have proven effectively in the detection of various water quality indicators, including organic matter, nitrogen, heavy metals, pH levels, and dissolved oxygen. This comprehensive review aims to provide a critical analysis of the current research landscape and the latest advancements in MFC technology, with special emphasis on the challenges encountered in its application for wastewater and water quality monitoring. Moreover, strategies for performance improvement, such as the adoption of miniaturized structures, the exploration of innovative materials, and the application of mathematical modelling for analysis, are also discussed. The review also explores potential avenues for future research, especially in the realm of detecting mixed pollutants. Thus, it provides insightful perspectives on the evolving field of biosensor technology based on MFCs.

基于微生物燃料电池的生物传感器在环境监测中的应用 - 综述
na
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electroanalysis
Electroanalysis 化学-电化学
CiteScore
6.00
自引率
3.30%
发文量
222
审稿时长
2.4 months
期刊介绍: Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications. Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信