Dichotomy results for eventually always hitting time statistics and almost sure growth of extremes

IF 1.2 2区 数学 Q1 MATHEMATICS
Mark Holland, Maxim Kirsebom, Philipp Kunde, Tomas Persson
{"title":"Dichotomy results for eventually always hitting time statistics and almost sure growth of extremes","authors":"Mark Holland, Maxim Kirsebom, Philipp Kunde, Tomas Persson","doi":"10.1090/tran/9102","DOIUrl":null,"url":null,"abstract":"<p>Suppose <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f comma script upper X comma mu right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">X</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(f,\\mathcal {X},\\mu )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a measure preserving dynamical system and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi colon script upper X right-arrow double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\phi \\colon \\mathcal {X}\\to \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a measurable function. Consider the maximum process <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Subscript n Baseline colon-equal max left-brace right-brace comma comma upper X 1 comma ellipsis comma Xn\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>≔</mml:mo> <mml:mo movablelimits=\"true\" form=\"prefix\">max</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M_n≔\\max \\{X_1,\\ldots ,X_n\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X Subscript i Baseline equals phi ring f Superscript i minus 1\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>∘<!-- ∘ --></mml:mo> <mml:msup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_i=\\phi \\circ f^{i-1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a time series of observations on the system. Suppose that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis u Subscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(u_n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a non-decreasing sequence of real numbers, such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu left-parenthesis upper X 1 greater-than u Subscript n Baseline right-parenthesis right-arrow 0\"> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>&gt;</mml:mo> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mu (X_1&gt;u_n)\\to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For certain dynamical systems, we obtain a zero–one measure dichotomy for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu left-parenthesis upper M Subscript n Baseline less-than-or-equal-to u Subscript n Baseline i period o period right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mspace width=\"thinmathspace\" /> <mml:mtext>i.o.</mml:mtext> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mu (M_n\\leq u_n\\,\\text {i.o.})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depending on the sequence <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Subscript n\"> <mml:semantics> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">u_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Specific examples are piecewise expanding interval maps including the Gauß map. For the broader class of non-uniformly hyperbolic dynamical systems, we make significant improvements on existing literature for characterising the sequences <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Subscript n\"> <mml:semantics> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">u_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our results on the permitted sequences <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Subscript n\"> <mml:semantics> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">u_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are commensurate with the optimal sequences (and series criteria) obtained by Klass (1985) for i.i.d. processes. Moreover, we also develop new series criteria on the permitted sequences in the case where the i.i.d. theory breaks down. Our analysis has strong connections to specific problems in eventual always hitting time statistics and extreme value theory.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9102","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose ( f , X , μ ) (f,\mathcal {X},\mu ) is a measure preserving dynamical system and ϕ : X R \phi \colon \mathcal {X}\to \mathbb {R} a measurable function. Consider the maximum process M n max { X 1 , , X n } M_n≔\max \{X_1,\ldots ,X_n\} , where X i = ϕ f i 1 X_i=\phi \circ f^{i-1} is a time series of observations on the system. Suppose that ( u n ) (u_n) is a non-decreasing sequence of real numbers, such that μ ( X 1 > u n ) 0 \mu (X_1>u_n)\to 0 . For certain dynamical systems, we obtain a zero–one measure dichotomy for μ ( M n u n i.o. ) \mu (M_n\leq u_n\,\text {i.o.}) depending on the sequence u n u_n . Specific examples are piecewise expanding interval maps including the Gauß map. For the broader class of non-uniformly hyperbolic dynamical systems, we make significant improvements on existing literature for characterising the sequences u n u_n . Our results on the permitted sequences u n u_n are commensurate with the optimal sequences (and series criteria) obtained by Klass (1985) for i.i.d. processes. Moreover, we also develop new series criteria on the permitted sequences in the case where the i.i.d. theory breaks down. Our analysis has strong connections to specific problems in eventual always hitting time statistics and extreme value theory.

最终总是命中时间统计和几乎肯定的极端增长的二分法结果
假设 ( f , X , μ ) (f,\mathcal {X},\mu ) 是一个度量保全动力系统,并且 ϕ : X → R \phi \colon \mathcal {X}\to \mathbb {R} 是一个可测函数。考虑最大过程 M n ≔ max { X 1 , ... , X n } M_n≔ max \{X_1,\ldots ,X_n\} 。 其中,X i = ϕ ∘ f i - 1 X_i=\phi \circ f^{i-1} 是系统的观测时间序列。假设 ( u n ) (u_n) 是一个不递减的实数序列,使得 μ ( X 1 > u n ) → 0 \mu (X_1>u_n)\to 0 。对于某些动力系统,我们会得到一个零一度量二分法,即 μ ( M n ≤ u n i.o. ) \mu (M_n\leq u_n\,\text {i.o.}) 取决于序列 u n u_n 。具体的例子有片断展开的区间映射,包括高斯映射。对于更广泛的非均匀双曲动力学系统,我们在描述序列 u n u_n 的特征方面比现有文献有了重大改进。我们关于允许序列 u n u_n 的结果与 Klass(1985 年)针对 i.i.d. 过程得到的最优序列(和序列标准)是一致的。此外,在 i.i.d. 理论失效的情况下,我们还为允许序列制定了新的序列准则。我们的分析与偶发时间统计和极值理论中的具体问题有着密切联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信