{"title":"On the Iwasawa main conjecture for the double product","authors":"Daniel Delbourgo","doi":"10.1090/tran/9169","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\"> <mml:semantics> <mml:mi>σ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote a pair of absolutely irreducible <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ordinary and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-distinguished Galois representations into <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 2 left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {GL}_2(\\overline {\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Given two primitive forms <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(f,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"w t left-parenthesis f right-parenthesis greater-than w t left-parenthesis g right-parenthesis greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>wt</mml:mi> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>></mml:mo> <mml:mi>wt</mml:mi> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {wt}(f)>\\operatorname {wt}(g)> 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript f Baseline approximately-equals sigma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>σ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_f\\cong \\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript g Baseline approximately-equals tau\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_g\\cong \\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we show that the Iwasawa Main Conjecture for the double product <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho Subscript f Baseline circled-times rho Subscript g\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>⊗</mml:mo> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mi>g</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho _f\\otimes \\rho _g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depends only on the residual Galois representation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma circled-times tau colon upper G Subscript double-struck upper Q Baseline right-arrow upper G upper L 4 left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>⊗</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">→</mml:mo> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>4</mml:mn> </mml:msub> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\otimes \\tau : G_{\\mathbb {Q}}\\rightarrow \\operatorname {GL}_4(\\overline {\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. More precisely, if IMC(<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f circled-times g\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>⊗</mml:mo> <mml:mi>g</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f\\otimes g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) is true for one pair <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(f,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript f Baseline approximately-equals sigma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>σ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_f \\cong \\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript g Baseline approximately-equals tau\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_g\\cong \\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and whose <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant equals zero, then it is true for every congruent pair too.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9169","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let σ\sigma and τ\tau denote a pair of absolutely irreducible pp-ordinary and pp-distinguished Galois representations into GL2(F¯p)\operatorname {GL}_2(\overline {\mathbb {F}}_p). Given two primitive forms (f,g)(f,g) such that wt(f)>wt(g)>1\operatorname {wt}(f)>\operatorname {wt}(g)> 1 and where ρ¯f≅σ\overline {\rho }_f\cong \sigma and ρ¯g≅τ\overline {\rho }_g\cong \tau, we show that the Iwasawa Main Conjecture for the double product ρf⊗ρg\rho _f\otimes \rho _g depends only on the residual Galois representation σ⊗τ:GQ→GL4(F¯p)\sigma \otimes \tau : G_{\mathbb {Q}}\rightarrow \operatorname {GL}_4(\overline {\mathbb {F}}_p). More precisely, if IMC(f⊗gf\otimes g) is true for one pair (f,g)(f,g) with ρ¯f≅σ\overline {\rho }_f \cong \sigma and ρ¯g≅τ\overline {\rho }_g\cong \tau and whose μ\mu-invariant equals zero, then it is true for every congruent pair too.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.