On the Iwasawa main conjecture for the double product

IF 1.2 2区 数学 Q1 MATHEMATICS
Daniel Delbourgo
{"title":"On the Iwasawa main conjecture for the double product","authors":"Daniel Delbourgo","doi":"10.1090/tran/9169","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\"> <mml:semantics> <mml:mi>σ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote a pair of absolutely irreducible <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ordinary and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-distinguished Galois representations into <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 2 left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>⁡</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {GL}_2(\\overline {\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Given two primitive forms <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(f,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"w t left-parenthesis f right-parenthesis greater-than w t left-parenthesis g right-parenthesis greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>wt</mml:mi> <mml:mo>⁡</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mi>wt</mml:mi> <mml:mo>⁡</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {wt}(f)&gt;\\operatorname {wt}(g)&gt; 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript f Baseline approximately-equals sigma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>σ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_f\\cong \\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript g Baseline approximately-equals tau\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_g\\cong \\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we show that the Iwasawa Main Conjecture for the double product <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho Subscript f Baseline circled-times rho Subscript g\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>⊗</mml:mo> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mi>g</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho _f\\otimes \\rho _g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depends only on the residual Galois representation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma circled-times tau colon upper G Subscript double-struck upper Q Baseline right-arrow upper G upper L 4 left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>⊗</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">→</mml:mo> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>4</mml:mn> </mml:msub> <mml:mo>⁡</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\otimes \\tau : G_{\\mathbb {Q}}\\rightarrow \\operatorname {GL}_4(\\overline {\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. More precisely, if IMC(<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f circled-times g\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>⊗</mml:mo> <mml:mi>g</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f\\otimes g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) is true for one pair <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(f,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript f Baseline approximately-equals sigma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>σ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_f \\cong \\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript g Baseline approximately-equals tau\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_g\\cong \\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and whose <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant equals zero, then it is true for every congruent pair too.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9169","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let σ \sigma and τ \tau denote a pair of absolutely irreducible p p -ordinary and p p -distinguished Galois representations into GL 2 ( F ¯ p ) \operatorname {GL}_2(\overline {\mathbb {F}}_p) . Given two primitive forms ( f , g ) (f,g) such that wt ( f ) > wt ( g ) > 1 \operatorname {wt}(f)>\operatorname {wt}(g)> 1 and where ρ ¯ f σ \overline {\rho }_f\cong \sigma and ρ ¯ g τ \overline {\rho }_g\cong \tau , we show that the Iwasawa Main Conjecture for the double product ρ f ρ g \rho _f\otimes \rho _g depends only on the residual Galois representation σ τ : G Q GL 4 ( F ¯ p ) \sigma \otimes \tau : G_{\mathbb {Q}}\rightarrow \operatorname {GL}_4(\overline {\mathbb {F}}_p) . More precisely, if IMC( f g f\otimes g ) is true for one pair ( f , g ) (f,g) with ρ ¯ f σ \overline {\rho }_f \cong \sigma and ρ ¯ g τ \overline {\rho }_g\cong \tau and whose μ \mu -invariant equals zero, then it is true for every congruent pair too.

关于双积的岩泽主猜想
让 σ \sigma 和 τ \tau 表示进入 GL 2 ( F ¯ p ) 的一对绝对不可还原的 p p -ordinary 和 p p -distinguished 的伽罗瓦表示(operatorname {GL}_2(\overline {\mathbb {F}}_p) )。给定两个基元形式 ( f , g ) (f,g) ,使得 wt ( f ) > wt ( g ) > 1 \operatorname {wt}(f)>\operatorname {wt}(g)>;1 且其中 ρ ¯ f ≅ σ \overline {\rho }_f\cong \sigma 和 ρ ¯ g τ \overline {\rho }_g\cong \tau ,我们证明了双乘积 ρ f ⊗ ρ g \rho _f\otimes \rho _g 的岩泽主猜想只取决于残差伽罗瓦表示 σ ⊗ τ : G Q → GL 4 ( F ¯ p ) \sigma \otimes \tau : G_{\mathbb {Q}}\rightarrow \operatorname {GL}_4(\overline {\mathbb {F}}_p) .更确切地说,如果 IMC( f ⊗ g f\otimes g ) 对于一对 ( f , g ) (f,g) 是真的,其中 ρ ¯ f ≅ σ \overline {\rho }_f \cong \sigma 和 ρ ¯ g τ \overline {\rho }_g\cong \tau 且其 μ \mu -不变式等于零,那么它对于每一对全等的也是真的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信