Kristen Fernandes, Sophia Clark-Ioannou, Benjamin J. Saunders, Jonathan Majer, Philip W. Bateman, Michael Bunce, Paul Nevill
{"title":"Mining exploration infrastructure affects biophysical habitat characteristics and ground-dwelling arthropod communities","authors":"Kristen Fernandes, Sophia Clark-Ioannou, Benjamin J. Saunders, Jonathan Majer, Philip W. Bateman, Michael Bunce, Paul Nevill","doi":"10.1007/s10531-024-02865-2","DOIUrl":null,"url":null,"abstract":"<p>Monitoring of environmental impacts of mining activities typically focuses on the main operation footprint, neglecting exploration infrastructure like tracks, roads, and drill pads. These areas are cleared of native vegetation and impacts on the surrounding environment can be both cumulative and enigmatic. Here, we study the impacts of mining exploration infrastructure on habitat characteristics and ground-dwelling arthropod communities in the Midwest region of Western Australia. The study was conducted at three mine sites, each with three infrastructure types: maintained tracks, unmaintained tracks, and drill pads along transects extending 100 m away from the disturbance into remnant vegetation. Habitat characteristics were measured, and arthropods collected from pitfall traps along these transects and identified using COI metabarcoding. The overall arthropod community and two indicator groups, ants (Formicidae) and springtails (Collembola) - were used to measure arthropod responses to changes in response to habitat disturbance. Whilst changes in habitat were only visible to 10 m from the disturbance, impacts on arthropod communities could be detected up to 100 m into the remnant vegetation, and these responses were more complex. In general, we found similar patterns expressed in the compositional changes for arthropods overall and between our chosen indicator groups, but they were not the same across all sites and infrastructure types. Our results demonstrate the utility of bulk arthropod metabarcoding and different arthropod indicator groups for documenting the effects of fine-scale habitat destruction, degradation, or disturbance. They also highlight the need to monitor the negative impacts of mineral exploration on the environment.</p>","PeriodicalId":8843,"journal":{"name":"Biodiversity and Conservation","volume":"59 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodiversity and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10531-024-02865-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring of environmental impacts of mining activities typically focuses on the main operation footprint, neglecting exploration infrastructure like tracks, roads, and drill pads. These areas are cleared of native vegetation and impacts on the surrounding environment can be both cumulative and enigmatic. Here, we study the impacts of mining exploration infrastructure on habitat characteristics and ground-dwelling arthropod communities in the Midwest region of Western Australia. The study was conducted at three mine sites, each with three infrastructure types: maintained tracks, unmaintained tracks, and drill pads along transects extending 100 m away from the disturbance into remnant vegetation. Habitat characteristics were measured, and arthropods collected from pitfall traps along these transects and identified using COI metabarcoding. The overall arthropod community and two indicator groups, ants (Formicidae) and springtails (Collembola) - were used to measure arthropod responses to changes in response to habitat disturbance. Whilst changes in habitat were only visible to 10 m from the disturbance, impacts on arthropod communities could be detected up to 100 m into the remnant vegetation, and these responses were more complex. In general, we found similar patterns expressed in the compositional changes for arthropods overall and between our chosen indicator groups, but they were not the same across all sites and infrastructure types. Our results demonstrate the utility of bulk arthropod metabarcoding and different arthropod indicator groups for documenting the effects of fine-scale habitat destruction, degradation, or disturbance. They also highlight the need to monitor the negative impacts of mineral exploration on the environment.
期刊介绍:
Biodiversity and Conservation is an international journal that publishes articles on all aspects of biological diversity-its description, analysis and conservation, and its controlled rational use by humankind. The scope of Biodiversity and Conservation is wide and multidisciplinary, and embraces all life-forms.
The journal presents research papers, as well as editorials, comments and research notes on biodiversity and conservation, and contributions dealing with the practicalities of conservation management, economic, social and political issues. The journal provides a forum for examining conflicts between sustainable development and human dependence on biodiversity in agriculture, environmental management and biotechnology, and encourages contributions from developing countries to promote broad global perspectives on matters of biodiversity and conservation.