Continuous pipe-stream self-assembly technology for preparation of high sphericity FOX-7/HMX energetic composite microspheres

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-05-09 DOI:10.1063/5.0208981
Xiangyu Zhang, Jianquan Jing, Jiaoyang Liu, Liting Zhang, Leixin Qi, Chongwei An
{"title":"Continuous pipe-stream self-assembly technology for preparation of high sphericity FOX-7/HMX energetic composite microspheres","authors":"Xiangyu Zhang, Jianquan Jing, Jiaoyang Liu, Liting Zhang, Leixin Qi, Chongwei An","doi":"10.1063/5.0208981","DOIUrl":null,"url":null,"abstract":"The emphasis on producing high-energy and insensitive composite microspheres has increased in energetic materials. However, few methods are available for preparing good spherical and morphological composite microspheres. To produce composite microspheres that are both high-energy and safe, in this article, a continuous pipe-stream self-assembly device was constructed to produce FOX-7/HMX composite microspheres continuously and taking advantage of the principle that PVA and Tween-80 can reduce the surface tension of the microspheres in water. In comparison with the molding powders produced by the kneading way, the FOX-7/HMX composite microspheres prepared by this device had fewer surface defects, a denser structure, a more spherical shape, and a smaller range of particle sizes. The mechanical properties of the pressed columns were better, with maximum compressive strength and strain increased by 44.2% and 21.4%, respectively; and the flowability and bulk density were also improved to some extent (angle of repose: energetic microspheres vs kneading method molding powder, 26.6° vs 51.1°; bulk density: energetic microspheres vs kneading method molding powder, 0.522 vs 0.426 g/cm3). Mechanical sensitivity has also been significantly reduced. This article provides innovative ideas for preparing high-energy and insensitive composite microspheres using a continuous pipe-stream self-assembly device.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"42 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0208981","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The emphasis on producing high-energy and insensitive composite microspheres has increased in energetic materials. However, few methods are available for preparing good spherical and morphological composite microspheres. To produce composite microspheres that are both high-energy and safe, in this article, a continuous pipe-stream self-assembly device was constructed to produce FOX-7/HMX composite microspheres continuously and taking advantage of the principle that PVA and Tween-80 can reduce the surface tension of the microspheres in water. In comparison with the molding powders produced by the kneading way, the FOX-7/HMX composite microspheres prepared by this device had fewer surface defects, a denser structure, a more spherical shape, and a smaller range of particle sizes. The mechanical properties of the pressed columns were better, with maximum compressive strength and strain increased by 44.2% and 21.4%, respectively; and the flowability and bulk density were also improved to some extent (angle of repose: energetic microspheres vs kneading method molding powder, 26.6° vs 51.1°; bulk density: energetic microspheres vs kneading method molding powder, 0.522 vs 0.426 g/cm3). Mechanical sensitivity has also been significantly reduced. This article provides innovative ideas for preparing high-energy and insensitive composite microspheres using a continuous pipe-stream self-assembly device.
制备高球形度 FOX-7/HMX 高能复合微球的连续管流自组装技术
高能材料越来越重视生产高能量和不敏感的复合微球。然而,目前能制备良好球形和形态的复合微球的方法很少。为了制备既高能又安全的复合微球,本文利用 PVA 和吐温-80 能降低微球在水中的表面张力的原理,构建了一种连续管流自组装装置,以连续制备 FOX-7/HMX 复合微球。与捏合方式生产的成型粉末相比,该装置制备的 FOX-7/HMX 复合微球表面缺陷更少、结构更致密、形状更球形、粒度范围更小。压制柱的机械性能更好,最大抗压强度和应变分别提高了 44.2% 和 21.4%;流动性和堆积密度也得到了一定程度的改善(静止角:高能微球与捏合法成型粉末对比,26.6° vs 51.1°;堆积密度:高能微球与捏合法成型粉末对比,0.522 vs 0.426 g/cm3)。机械敏感性也显著降低。本文为使用连续管流自组装装置制备高能量、不敏感的复合微球提供了创新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信