HongHui Huang, HangYang Meng, ShouHong Qiao, Ning Su
{"title":"The permutizer of the main diagonal subgroups in direct products","authors":"HongHui Huang, HangYang Meng, ShouHong Qiao, Ning Su","doi":"10.1007/s11587-024-00866-5","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a finite group, <span>\\(H\\le G\\)</span>. The permutizer of <i>H</i> in <i>G</i> is defined to be <span>\\(P_G(H)=\\langle x\\in G|~H\\langle x\\rangle =\\langle x\\rangle H\\rangle \\)</span>. Let <span>\\(D=\\{(g, g)|~g\\in G\\}\\)</span>, the main diagonal subgroup of <span>\\(G\\times G\\)</span>. In this paper, we use the permutizer of <i>D</i> in <span>\\(G\\times G\\)</span> to characterize the structure of <i>G</i>, and the following main result is obtained. <i>Main Theorem</i>: Let <i>G</i> be a group, <span>\\(D=\\{(g, g)|~g\\in G\\}\\)</span>. Then the group <span>\\(G\\times G\\)</span> has a chain of subgroups from <i>D</i> to <span>\\(G\\times G\\)</span> with each contained in the permutizer of the previous subgroup if and only if all chief factors <i>T</i> of <i>G</i> have prime order or order 4 with <span>\\(G/{C_G(T)}\\cong S_3\\)</span>. Finally, we also present two theorems deciding the supersolubility of finite groups.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"40 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00866-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a finite group, \(H\le G\). The permutizer of H in G is defined to be \(P_G(H)=\langle x\in G|~H\langle x\rangle =\langle x\rangle H\rangle \). Let \(D=\{(g, g)|~g\in G\}\), the main diagonal subgroup of \(G\times G\). In this paper, we use the permutizer of D in \(G\times G\) to characterize the structure of G, and the following main result is obtained. Main Theorem: Let G be a group, \(D=\{(g, g)|~g\in G\}\). Then the group \(G\times G\) has a chain of subgroups from D to \(G\times G\) with each contained in the permutizer of the previous subgroup if and only if all chief factors T of G have prime order or order 4 with \(G/{C_G(T)}\cong S_3\). Finally, we also present two theorems deciding the supersolubility of finite groups.
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.