HongHui Huang, HangYang Meng, ShouHong Qiao, Ning Su
{"title":"The permutizer of the main diagonal subgroups in direct products","authors":"HongHui Huang, HangYang Meng, ShouHong Qiao, Ning Su","doi":"10.1007/s11587-024-00866-5","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a finite group, <span>\\(H\\le G\\)</span>. The permutizer of <i>H</i> in <i>G</i> is defined to be <span>\\(P_G(H)=\\langle x\\in G|~H\\langle x\\rangle =\\langle x\\rangle H\\rangle \\)</span>. Let <span>\\(D=\\{(g, g)|~g\\in G\\}\\)</span>, the main diagonal subgroup of <span>\\(G\\times G\\)</span>. In this paper, we use the permutizer of <i>D</i> in <span>\\(G\\times G\\)</span> to characterize the structure of <i>G</i>, and the following main result is obtained. <i>Main Theorem</i>: Let <i>G</i> be a group, <span>\\(D=\\{(g, g)|~g\\in G\\}\\)</span>. Then the group <span>\\(G\\times G\\)</span> has a chain of subgroups from <i>D</i> to <span>\\(G\\times G\\)</span> with each contained in the permutizer of the previous subgroup if and only if all chief factors <i>T</i> of <i>G</i> have prime order or order 4 with <span>\\(G/{C_G(T)}\\cong S_3\\)</span>. Finally, we also present two theorems deciding the supersolubility of finite groups.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00866-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a finite group, \(H\le G\). The permutizer of H in G is defined to be \(P_G(H)=\langle x\in G|~H\langle x\rangle =\langle x\rangle H\rangle \). Let \(D=\{(g, g)|~g\in G\}\), the main diagonal subgroup of \(G\times G\). In this paper, we use the permutizer of D in \(G\times G\) to characterize the structure of G, and the following main result is obtained. Main Theorem: Let G be a group, \(D=\{(g, g)|~g\in G\}\). Then the group \(G\times G\) has a chain of subgroups from D to \(G\times G\) with each contained in the permutizer of the previous subgroup if and only if all chief factors T of G have prime order or order 4 with \(G/{C_G(T)}\cong S_3\). Finally, we also present two theorems deciding the supersolubility of finite groups.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.