The permutizer of the main diagonal subgroups in direct products

IF 1.1 4区 数学 Q1 MATHEMATICS
HongHui Huang, HangYang Meng, ShouHong Qiao, Ning Su
{"title":"The permutizer of the main diagonal subgroups in direct products","authors":"HongHui Huang, HangYang Meng, ShouHong Qiao, Ning Su","doi":"10.1007/s11587-024-00866-5","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a finite group, <span>\\(H\\le G\\)</span>. The permutizer of <i>H</i> in <i>G</i> is defined to be <span>\\(P_G(H)=\\langle x\\in G|~H\\langle x\\rangle =\\langle x\\rangle H\\rangle \\)</span>. Let <span>\\(D=\\{(g, g)|~g\\in G\\}\\)</span>, the main diagonal subgroup of <span>\\(G\\times G\\)</span>. In this paper, we use the permutizer of <i>D</i> in <span>\\(G\\times G\\)</span> to characterize the structure of <i>G</i>, and the following main result is obtained. <i>Main Theorem</i>: Let <i>G</i> be a group, <span>\\(D=\\{(g, g)|~g\\in G\\}\\)</span>. Then the group <span>\\(G\\times G\\)</span> has a chain of subgroups from <i>D</i> to <span>\\(G\\times G\\)</span> with each contained in the permutizer of the previous subgroup if and only if all chief factors <i>T</i> of <i>G</i> have prime order or order 4 with <span>\\(G/{C_G(T)}\\cong S_3\\)</span>. Finally, we also present two theorems deciding the supersolubility of finite groups.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"40 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00866-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a finite group, \(H\le G\). The permutizer of H in G is defined to be \(P_G(H)=\langle x\in G|~H\langle x\rangle =\langle x\rangle H\rangle \). Let \(D=\{(g, g)|~g\in G\}\), the main diagonal subgroup of \(G\times G\). In this paper, we use the permutizer of D in \(G\times G\) to characterize the structure of G, and the following main result is obtained. Main Theorem: Let G be a group, \(D=\{(g, g)|~g\in G\}\). Then the group \(G\times G\) has a chain of subgroups from D to \(G\times G\) with each contained in the permutizer of the previous subgroup if and only if all chief factors T of G have prime order or order 4 with \(G/{C_G(T)}\cong S_3\). Finally, we also present two theorems deciding the supersolubility of finite groups.

直积中主对角子群的换元器
让 G 是一个有限群,(H (le G))。H在G中的置换子定义为(P_G(H)=\langle x\in G|~H\langle x\rangle =\langle x\rangle H\rangle \)。让(D={(g,g)|~g\in G}/),成为(G乘以G)的主对角子群。在本文中,我们使用 D 在 \(G\times G\) 中的置换器来描述 G 的结构,并得到以下主要结果。主定理:设 G 是一个群,D={(g, g)|~g\in G\}\).那么群 \(G\times G\) 有一个从 D 到 \(G\times G\) 的子群链,其中每个子群都包含在前一个子群的置换子中,当且仅当 G 的所有主因子 T 都有素数阶或 4 阶,且 \(G/{C_G(T)}\cong S_3\).最后,我们还提出了两个决定有限群超溶性的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信