The Alternating Direction Method of Multipliers for Sufficient Dimension Reduction

IF 1.3 4区 数学 Q1 MATHEMATICS
Sheng Ma, Qin Jiang, Zaiqiang Ku
{"title":"The Alternating Direction Method of Multipliers for Sufficient Dimension Reduction","authors":"Sheng Ma, Qin Jiang, Zaiqiang Ku","doi":"10.1155/2024/3692883","DOIUrl":null,"url":null,"abstract":"The minimum average variance estimation (MAVE) method has proven to be an effective approach to sufficient dimension reduction. In this study, we apply the computationally efficient optimization algorithm named alternating direction method of multipliers (ADMM) to a particular approach (MAVE or minimum average variance estimation) to the problem of sufficient dimension reduction (SDR). Under some assumptions, we prove that the iterative sequence generated by ADMM converges to some point of the associated augmented Lagrangian function. Moreover, that point is stationary. It also presents some numerical simulations on synthetic data to demonstrate the computational efficiency of the algorithm.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"28 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/3692883","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The minimum average variance estimation (MAVE) method has proven to be an effective approach to sufficient dimension reduction. In this study, we apply the computationally efficient optimization algorithm named alternating direction method of multipliers (ADMM) to a particular approach (MAVE or minimum average variance estimation) to the problem of sufficient dimension reduction (SDR). Under some assumptions, we prove that the iterative sequence generated by ADMM converges to some point of the associated augmented Lagrangian function. Moreover, that point is stationary. It also presents some numerical simulations on synthetic data to demonstrate the computational efficiency of the algorithm.
用于充分降维的交替方向乘法
最小平均方差估计法(MAVE)已被证明是充分降维的有效方法。在本研究中,我们将计算高效的优化算法交替乘法(ADMM)应用于充分降维(SDR)问题的特定方法(MAVE 或最小平均方差估计)。在一些假设条件下,我们证明了 ADMM 生成的迭代序列会收敛到相关的增强拉格朗日函数的某个点。而且,该点是静止的。报告还介绍了一些对合成数据的数值模拟,以证明该算法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信