Numerical investigation of the effect of an air layer on the melting process of phase change materials

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abbas Fadhil Khalaf, Farhan Lafta Rashid, Mudhar A. Al-Obaidi, Arman Ameen, Hayder I. Mohammed
{"title":"Numerical investigation of the effect of an air layer on the melting process of phase change materials","authors":"Abbas Fadhil Khalaf,&nbsp;Farhan Lafta Rashid,&nbsp;Mudhar A. Al-Obaidi,&nbsp;Arman Ameen,&nbsp;Hayder I. Mohammed","doi":"10.1007/s40243-024-00261-y","DOIUrl":null,"url":null,"abstract":"<div><p>Designing more effective thermal energy storage devices can result from understanding how air layers impact the melting process. The total efficiency of these systems can be improved by optimizing the melting process of the phase change materials (PCMs), which are utilised to store and release thermal energy. The current study utilises an analysis to evaluate how an air layer would affect melting of the PCM. The enthalpy-porosity combination based ANSYS/FLUENT 16 software is specifically used to accomplish this study, considering the paraffin wax (RT42) as the PCM. The study reveal that the presence of an air layer would impact the dissolution process. This result is assured an increase of melting time of PCM by 125% as a result to having an air layer of 5 cm thickness compared to a cell without an air layer. Furthermore, an increase of the layer thickness beyond 5 cm has a progressive effect on the melting time of PCM. One important component that affects the melting process is the existence of an air layer above the cell. Greater heat transfer resistance from thicker air layers prolongs the time needed to finish melting. The efficient heat transmission of PCM is shown to be reduced when there is an air layer above the cell. The melting process gradually slows down as the air layer thickness rises, which reflects the decreased heat transmission. These results highlight how crucial it is to take the environment into account while creating PCM-filled energy storage cells.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"291 - 305"},"PeriodicalIF":3.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00261-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00261-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing more effective thermal energy storage devices can result from understanding how air layers impact the melting process. The total efficiency of these systems can be improved by optimizing the melting process of the phase change materials (PCMs), which are utilised to store and release thermal energy. The current study utilises an analysis to evaluate how an air layer would affect melting of the PCM. The enthalpy-porosity combination based ANSYS/FLUENT 16 software is specifically used to accomplish this study, considering the paraffin wax (RT42) as the PCM. The study reveal that the presence of an air layer would impact the dissolution process. This result is assured an increase of melting time of PCM by 125% as a result to having an air layer of 5 cm thickness compared to a cell without an air layer. Furthermore, an increase of the layer thickness beyond 5 cm has a progressive effect on the melting time of PCM. One important component that affects the melting process is the existence of an air layer above the cell. Greater heat transfer resistance from thicker air layers prolongs the time needed to finish melting. The efficient heat transmission of PCM is shown to be reduced when there is an air layer above the cell. The melting process gradually slows down as the air layer thickness rises, which reflects the decreased heat transmission. These results highlight how crucial it is to take the environment into account while creating PCM-filled energy storage cells.

Abstract Image

空气层对相变材料熔化过程影响的数值研究
了解空气层对熔化过程的影响,可以设计出更有效的热能储存设备。通过优化相变材料 (PCM) 的熔化过程,可以提高这些系统的总效率。本研究通过分析评估空气层对 PCM 熔化的影响。考虑到石蜡 (RT42) 作为 PCM,本研究特别使用了基于 ANSYS/FLUENT 16 软件的焓-孔组合。研究表明,空气层的存在会影响溶解过程。与没有空气层的电池相比,有 5 厘米厚的空气层后,PCM 的熔化时间延长了 125%。此外,空气层厚度增加到 5 厘米以上,对 PCM 的熔化时间也会产生渐进影响。影响熔化过程的一个重要因素是电池上方是否存在空气层。较厚的空气层会产生较大的热传导阻力,从而延长完成熔化所需的时间。当电池上方存在空气层时,PCM 的有效传热会降低。随着空气层厚度的增加,熔化过程会逐渐减慢,这反映了热传递的减弱。这些结果突显了在制造充满 PCM 的储能电池时考虑环境因素是多么重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信