Matteo Mucciconi, Makiko Sasada, Tomohiro Sasamoto, Hayate Suda
{"title":"Relationships between two linearizations of the box-ball system: Kerov–Kirillov–Reschetikhin bijection and slot configuration","authors":"Matteo Mucciconi, Makiko Sasada, Tomohiro Sasamoto, Hayate Suda","doi":"10.1017/fms.2024.39","DOIUrl":null,"url":null,"abstract":"The box-ball system (BBS), which was introduced by Takahashi and Satsuma in 1990, is a soliton cellular automaton. Its dynamics can be linearized by a few methods, among which the best known is the Kerov–Kirillov–Reschetikhin (KKR) bijection using rigged partitions. Recently, a new linearization method in terms of ‘slot configurations’ was introduced by Ferrari–Nguyen–Rolla–Wang, but its relations to existing ones have not been clarified. In this paper, we investigate this issue and clarify the relation between the two linearizations. For this, we introduce a novel way of describing the BBS dynamics using a carrier with seat numbers. We show that the seat number configuration also linearizes the BBS and reveals explicit relations between the KKR bijection and the slot configuration. In addition, by using these explicit relations, we also show that even in case of finite carrier capacity the BBS can be linearized via the slot configuration.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.39","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The box-ball system (BBS), which was introduced by Takahashi and Satsuma in 1990, is a soliton cellular automaton. Its dynamics can be linearized by a few methods, among which the best known is the Kerov–Kirillov–Reschetikhin (KKR) bijection using rigged partitions. Recently, a new linearization method in terms of ‘slot configurations’ was introduced by Ferrari–Nguyen–Rolla–Wang, but its relations to existing ones have not been clarified. In this paper, we investigate this issue and clarify the relation between the two linearizations. For this, we introduce a novel way of describing the BBS dynamics using a carrier with seat numbers. We show that the seat number configuration also linearizes the BBS and reveals explicit relations between the KKR bijection and the slot configuration. In addition, by using these explicit relations, we also show that even in case of finite carrier capacity the BBS can be linearized via the slot configuration.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.