{"title":"Minimal subdynamics and minimal flows without characteristic measures","authors":"Joshua Frisch, Brandon Seward, Andy Zucker","doi":"10.1017/fms.2024.41","DOIUrl":null,"url":null,"abstract":"Given a countable group <jats:italic>G</jats:italic> and a <jats:italic>G</jats:italic>-flow <jats:italic>X</jats:italic>, a probability measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000410_inline1.png\"/> <jats:tex-math> $\\mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:italic>X</jats:italic> is called characteristic if it is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000410_inline2.png\"/> <jats:tex-math> $\\mathrm {Aut}(X, G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariant. Frisch and Tamuz asked about the existence of a minimal <jats:italic>G</jats:italic>-flow, for any group <jats:italic>G</jats:italic>, which does not admit a characteristic measure. We construct for every countable group <jats:italic>G</jats:italic> such a minimal flow. Along the way, we are motivated to consider a family of questions we refer to as minimal subdynamics: Given a countable group <jats:italic>G</jats:italic> and a collection of infinite subgroups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000410_inline3.png\"/> <jats:tex-math> $\\{\\Delta _i: i\\in I\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, when is there a faithful <jats:italic>G</jats:italic>-flow for which every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000410_inline4.png\"/> <jats:tex-math> $\\Delta _i$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> acts minimally?","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.41","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a countable group G and a G-flow X, a probability measure $\mu $ on X is called characteristic if it is $\mathrm {Aut}(X, G)$ -invariant. Frisch and Tamuz asked about the existence of a minimal G-flow, for any group G, which does not admit a characteristic measure. We construct for every countable group G such a minimal flow. Along the way, we are motivated to consider a family of questions we refer to as minimal subdynamics: Given a countable group G and a collection of infinite subgroups $\{\Delta _i: i\in I\}$ , when is there a faithful G-flow for which every $\Delta _i$ acts minimally?
给定一个可数群 G 和一个 G 流 X,如果 X 上的概率度量 $\mu $ 是 $\mathrm {Aut}(X, G)$ -不变的,那么它就叫做特征度量。弗里施和塔穆兹提出了一个问题:对于任何群 G,是否存在一个最小的 G 流,它不允许特征度量?我们为每个可数群 G 构建了这样一个最小流。在此过程中,我们考虑了一系列我们称之为最小子动力学的问题:给定一个可数群 G 和一个无限子群的集合 $\{\Delta _i: i\in I\}$ ,什么时候存在一个忠实的 G 流,其中每个 $\Delta _i$ 的作用都是最小的?
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.