{"title":"MSOA: A modular service-oriented architecture to integrate mobile manipulators as cyber-physical systems","authors":"Nooshin Ghodsian, Khaled Benfriha, Adel Olabi, Varun Gopinath, Esma Talhi, Lucas Hof, Aurélien Arnou","doi":"10.1007/s10845-024-02404-4","DOIUrl":null,"url":null,"abstract":"<p>In the evolving landscape of the fourth industrial revolution, the integration of cyber-physical systems (CPSs) into industrial manufacturing, particularly focusing on autonomous mobile manipulators (MMs), is examined. A comprehensive framework is proposed for embedding MMs into existing production systems, addressing the burgeoning need for flexibility and adaptability in contemporary manufacturing. At the heart of this framework is the development of a modular service-oriented architecture, characterized by adaptive decentralization. This approach prioritizes real-time interoperability and leverages virtual capabilities, which is crucial for the effective integration of MMs as CPSs. The framework is designed to not only accommodate the operational complexities of MMs but also ensure their seamless alignment with existing production control systems. The practical application of this framework is demonstrated at the Platform 4.0 research production line at Arts et Métiers. An MM named MoMa, developed by OMRON Company, was integrated into the system. This application highlighted the framework’s capacity to significantly enhance the production system's flexibility, autonomy, and efficiency. Managed by the manufacturing execution system (MES), the successful integration of MoMa exemplifies the framework's potential to transform manufacturing processes in alignment with the principles of Industry 4.0.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"123 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02404-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the evolving landscape of the fourth industrial revolution, the integration of cyber-physical systems (CPSs) into industrial manufacturing, particularly focusing on autonomous mobile manipulators (MMs), is examined. A comprehensive framework is proposed for embedding MMs into existing production systems, addressing the burgeoning need for flexibility and adaptability in contemporary manufacturing. At the heart of this framework is the development of a modular service-oriented architecture, characterized by adaptive decentralization. This approach prioritizes real-time interoperability and leverages virtual capabilities, which is crucial for the effective integration of MMs as CPSs. The framework is designed to not only accommodate the operational complexities of MMs but also ensure their seamless alignment with existing production control systems. The practical application of this framework is demonstrated at the Platform 4.0 research production line at Arts et Métiers. An MM named MoMa, developed by OMRON Company, was integrated into the system. This application highlighted the framework’s capacity to significantly enhance the production system's flexibility, autonomy, and efficiency. Managed by the manufacturing execution system (MES), the successful integration of MoMa exemplifies the framework's potential to transform manufacturing processes in alignment with the principles of Industry 4.0.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.