Simulation-Guided Design of Gradient Multilayer Microwave Absorber with Tailored Absorption Performance

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ye Wang, Chunzheng Lv, Xuan Zhang, Xingang Liu, Chuhong Zhang
{"title":"Simulation-Guided Design of Gradient Multilayer Microwave Absorber with Tailored Absorption Performance","authors":"Ye Wang,&nbsp;Chunzheng Lv,&nbsp;Xuan Zhang,&nbsp;Xingang Liu,&nbsp;Chuhong Zhang","doi":"10.1002/mame.202400015","DOIUrl":null,"url":null,"abstract":"<p>Flexible microwave absorber (MAR), vital in advanced applications such as wearable electronics and precision devices, are highly valued for their lightweight, exceptional electromagnetic waves (EWs), and ease of fabrication. However, optimizing the electromagnetic parameters of microwave absorption materials (MAMs) to enhance absorption ability and expand effective absorption broadband (EAB, reflection loss (RL) &lt;−10 dB) is a considerable challenge. Herein, a permittivity-attenuation evaluation diagram (PAED) is constructed using parameter scanning based on the Materials Genome Initiative to determine the ideal electromagnetic parameters and thickness, optimize absorption efficiency, and obtain highly efficient absorbers. Guided by the PAED, a multilayer MAR consisting of a “matching-absorption-reflection layer” and a dielectric loss gradient aligned with the direction of EWs propagation is developed. This design significantly enhances the EWs penetration and ensures effective absorption, attributed to the well-matched impedance and attenuation characteristics. As anticipated, the microwave absorption of the absorber (density = 0.063 g cm<sup>−3</sup>) is optimized, with an RL of −34 dB at <i>d</i> = 4 mm and an EAB covering the entire X-band (8.2–12.4 GHz). This study presents a novel approach for establishing a material database for MAMs and developing high-performance absorbers characterized by thinness, lightness, broad operational frequency range, and robust absorption capacity.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400015","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible microwave absorber (MAR), vital in advanced applications such as wearable electronics and precision devices, are highly valued for their lightweight, exceptional electromagnetic waves (EWs), and ease of fabrication. However, optimizing the electromagnetic parameters of microwave absorption materials (MAMs) to enhance absorption ability and expand effective absorption broadband (EAB, reflection loss (RL) <−10 dB) is a considerable challenge. Herein, a permittivity-attenuation evaluation diagram (PAED) is constructed using parameter scanning based on the Materials Genome Initiative to determine the ideal electromagnetic parameters and thickness, optimize absorption efficiency, and obtain highly efficient absorbers. Guided by the PAED, a multilayer MAR consisting of a “matching-absorption-reflection layer” and a dielectric loss gradient aligned with the direction of EWs propagation is developed. This design significantly enhances the EWs penetration and ensures effective absorption, attributed to the well-matched impedance and attenuation characteristics. As anticipated, the microwave absorption of the absorber (density = 0.063 g cm−3) is optimized, with an RL of −34 dB at d = 4 mm and an EAB covering the entire X-band (8.2–12.4 GHz). This study presents a novel approach for establishing a material database for MAMs and developing high-performance absorbers characterized by thinness, lightness, broad operational frequency range, and robust absorption capacity.

Abstract Image

仿真引导设计具有定制吸收性能的梯度多层微波吸收器
柔性微波吸收器(MAR)在可穿戴电子设备和精密设备等先进应用中至关重要,因其重量轻、电磁波(EW)优异和易于制造而备受推崇。然而,优化微波吸收材料(MAMs)的电磁参数以增强吸收能力并扩大有效吸收宽带(EAB,反射损耗(RL)<-10 dB)是一项相当大的挑战。在此,利用基于材料基因组计划的参数扫描,构建了介电常数-衰减评估图(PAED),以确定理想的电磁参数和厚度,优化吸收效率,获得高效吸收体。在 PAED 的指导下,开发了一种由 "匹配-吸收-反射层 "和与 EW 传播方向一致的介质损耗梯度组成的多层 MAR。由于阻抗和衰减特性匹配良好,这种设计大大增强了 EWs 的穿透力,并确保了有效吸收。正如预期的那样,吸收器(密度 = 0.063 g cm-3)的微波吸收得到了优化,在 d = 4 mm 时 RL 为 -34 dB,EAB 覆盖整个 X 波段(8.2-12.4 GHz)。这项研究提出了一种新方法,可用于建立 MAM 材料数据库,并开发出具有轻薄、工作频率范围宽、吸收能力强等特点的高性能吸收器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信