A novel method based on deep learning algorithms for material deformation rate detection

IF 5.9 2区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Selim Özdem, İlhami Muharrem Orak
{"title":"A novel method based on deep learning algorithms for material deformation rate detection","authors":"Selim Özdem, İlhami Muharrem Orak","doi":"10.1007/s10845-024-02409-z","DOIUrl":null,"url":null,"abstract":"<p>Given the significant influence of microstructural characteristics on a material’s mechanical, physical, and chemical properties, this study posits that the deformation rate of structural steel S235-JR can be precisely determined by analyzing changes in its microstructure. Utilizing advanced artificial intelligence techniques, microstructure images of S235-JR were systematically analyzed to establish a correlation with the material’s lifespan. The steel was categorized into five classes and subjected to varying deformation rates through laboratory tensile tests. Post-deformation, the specimens underwent metallographic procedures to obtain microstructure images via an light optical microscope (LOM). A dataset comprising 10000 images was introduced and validated using K-Fold cross-validation. This research utilized deep learning (DL) architectures ResNet50, ResNet101, ResNet152, VGG16, and VGG19 through transfer learning to train and classify images containing deformation information. The effectiveness of these models was meticulously compared using a suite of metrics including Accuracy, F1-score, Recall, and Precision to determine their classification success. The classification accuracy was compared across the test data, with ResNet50 achieving the highest accuracy of 98.45%. This study contributes a five-class dataset of labeled images to the literature, offering a new resource for future research in material science and engineering.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"22 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02409-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Given the significant influence of microstructural characteristics on a material’s mechanical, physical, and chemical properties, this study posits that the deformation rate of structural steel S235-JR can be precisely determined by analyzing changes in its microstructure. Utilizing advanced artificial intelligence techniques, microstructure images of S235-JR were systematically analyzed to establish a correlation with the material’s lifespan. The steel was categorized into five classes and subjected to varying deformation rates through laboratory tensile tests. Post-deformation, the specimens underwent metallographic procedures to obtain microstructure images via an light optical microscope (LOM). A dataset comprising 10000 images was introduced and validated using K-Fold cross-validation. This research utilized deep learning (DL) architectures ResNet50, ResNet101, ResNet152, VGG16, and VGG19 through transfer learning to train and classify images containing deformation information. The effectiveness of these models was meticulously compared using a suite of metrics including Accuracy, F1-score, Recall, and Precision to determine their classification success. The classification accuracy was compared across the test data, with ResNet50 achieving the highest accuracy of 98.45%. This study contributes a five-class dataset of labeled images to the literature, offering a new resource for future research in material science and engineering.

Abstract Image

基于深度学习算法的材料变形率检测新方法
鉴于微观结构特征对材料的机械、物理和化学性质有重大影响,本研究认为可以通过分析 S235-JR 结构钢的微观结构变化来精确确定其变形率。利用先进的人工智能技术,对 S235-JR 的微观结构图像进行了系统分析,以建立与材料寿命的相关性。钢材被分为五类,并通过实验室拉伸试验承受不同的变形率。变形后,试样经过金相程序,通过光学显微镜(LOM)获得微观结构图像。引入了一个包含 10000 张图像的数据集,并使用 K-Fold 交叉验证进行了验证。本研究利用深度学习(DL)架构 ResNet50、ResNet101、ResNet152、VGG16 和 VGG19,通过迁移学习对包含变形信息的图像进行训练和分类。我们使用一系列指标(包括准确率、F1-分数、召回率和精确率)对这些模型的有效性进行了细致的比较,以确定它们的分类成功率。在对所有测试数据的分类准确率进行比较后,ResNet50 的准确率最高,达到 98.45%。这项研究为文献提供了五类标注图像数据集,为材料科学与工程领域的未来研究提供了新的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing 工程技术-工程:制造
CiteScore
19.30
自引率
9.60%
发文量
171
审稿时长
5.2 months
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信