Pitchfork bifurcation along a slow parameter ramp: Coherent structures in the critical scaling

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ryan Goh, Tasso J. Kaper, Arnd Scheel
{"title":"Pitchfork bifurcation along a slow parameter ramp: Coherent structures in the critical scaling","authors":"Ryan Goh,&nbsp;Tasso J. Kaper,&nbsp;Arnd Scheel","doi":"10.1111/sapm.12702","DOIUrl":null,"url":null,"abstract":"<p>We investigate the slow passage through a pitchfork bifurcation in a spatially extended system, when the onset of instability is slowly varying in space. We focus here on the critical parameter scaling, when the instability locus propagates with speed <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mo>∼</mo>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$c\\sim \\varepsilon ^{1/3}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math> is a small parameter that measures the gradient of the parameter ramp. Our results establish how the instability is mediated by a front traveling with the speed of the parameter ramp, and demonstrate scalings for a delay or advance of the instability relative to the bifurcation locus depending on the sign of <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math>, that is on the direction of propagation of the parameter ramp through the pitchfork bifurcation. The results also include a generalization of the classical Hastings–McLeod solution of the Painlevé-II equation to Painlevé-II equations with a drift term.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the slow passage through a pitchfork bifurcation in a spatially extended system, when the onset of instability is slowly varying in space. We focus here on the critical parameter scaling, when the instability locus propagates with speed c ε 1 / 3 $c\sim \varepsilon ^{1/3}$ , where ε $\varepsilon$ is a small parameter that measures the gradient of the parameter ramp. Our results establish how the instability is mediated by a front traveling with the speed of the parameter ramp, and demonstrate scalings for a delay or advance of the instability relative to the bifurcation locus depending on the sign of c $c$ , that is on the direction of propagation of the parameter ramp through the pitchfork bifurcation. The results also include a generalization of the classical Hastings–McLeod solution of the Painlevé-II equation to Painlevé-II equations with a drift term.

沿缓慢参数斜坡的捎叉分岔:临界缩放中的相干结构
我们研究了当不稳定性在空间缓慢变化时,在空间扩展系统中缓慢通过杈形分叉的问题。我们在此重点研究临界参数缩放,当不稳定位置以速度传播时,这里的速度是一个测量参数斜坡梯度的小参数。我们的结果确定了不稳定性是如何由以参数斜坡速度传播的前沿所介导的,并证明了不稳定性相对于分叉点的延迟或提前的标度,这取决于 , , , , , , , , , , , , , 的符号,也就是参数斜坡通过叉形分叉点的传播方向。研究结果还包括将 Painlevé-II 方程的经典 Hastings-McLeod 解推广到带有漂移项的 Painlevé-II 方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信