Scalable Jet-Based Fabrication of PEI-Hydrogel Particles for CO2 Capture

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jieke Jiang, Eline van Daatselaar, Hylke Wijnja, Tessa de Koning Gans, Michel Schellevis, Cornelis H. Venner, Derk W.F. Brilman, Claas Willem Visser
{"title":"Scalable Jet-Based Fabrication of PEI-Hydrogel Particles for CO2 Capture","authors":"Jieke Jiang,&nbsp;Eline van Daatselaar,&nbsp;Hylke Wijnja,&nbsp;Tessa de Koning Gans,&nbsp;Michel Schellevis,&nbsp;Cornelis H. Venner,&nbsp;Derk W.F. Brilman,&nbsp;Claas Willem Visser","doi":"10.1002/eem2.12748","DOIUrl":null,"url":null,"abstract":"<p>The capture, regeneration, and conversion of CO<sub>2</sub> from ambient air and flue gas streams are critical aspects of mitigating global warming. Solid sorbents for CO<sub>2</sub> absorption are very promising as they have high mass transfer areas without energy input and reduce emissions and minimize corrosion as compared to liquid sorbents. However, precisely tunable solid CO<sub>2</sub> sorbents are difficult to produce. Here, we demonstrate the high-throughput production of hydrogel-based CO<sub>2</sub>-absorbing particles <i>via</i> liquid jetting. By wrapping a liquid jet consisting of an aqueous solution of cross-linkable branched polyethylenimine (PEI) with a layer of suspension containing hydrophobic silica nanoparticles, monodisperse droplets with a silica nanoparticle coating layer was formed in the air. A stable Pickering emulsion containing PEI droplets was obtained after these ejected droplets were collected in a heated oil bath. The droplets turn into mm-sized particles after thermal curing in the bath. The diameter, PEI content, and silica content of the particles were systematically varied, and their CO<sub>2</sub> absorption was measured as a function of time. Steam regeneration of the particles enabled cyclic testing, revealing a CO<sub>2</sub> absorption capacity of 6.5 ± 0.5 mol kg<sup>−1</sup> solid PEI in pure CO<sub>2</sub> environments and 0.7 ± 0.3 mol kg<sup>−1</sup> solid PEI for direct air capture. Several thousands of particles were produced per second at a rate of around 0.5 kg per hour, with a single nozzle. This process can be further scaled by parallelization. The complete toolbox for the design, fabrication, testing, and regeneration of functional hydrogel particles provides a powerful route toward novel solid sorbents for regenerative CO<sub>2</sub> capture.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12748","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12748","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The capture, regeneration, and conversion of CO2 from ambient air and flue gas streams are critical aspects of mitigating global warming. Solid sorbents for CO2 absorption are very promising as they have high mass transfer areas without energy input and reduce emissions and minimize corrosion as compared to liquid sorbents. However, precisely tunable solid CO2 sorbents are difficult to produce. Here, we demonstrate the high-throughput production of hydrogel-based CO2-absorbing particles via liquid jetting. By wrapping a liquid jet consisting of an aqueous solution of cross-linkable branched polyethylenimine (PEI) with a layer of suspension containing hydrophobic silica nanoparticles, monodisperse droplets with a silica nanoparticle coating layer was formed in the air. A stable Pickering emulsion containing PEI droplets was obtained after these ejected droplets were collected in a heated oil bath. The droplets turn into mm-sized particles after thermal curing in the bath. The diameter, PEI content, and silica content of the particles were systematically varied, and their CO2 absorption was measured as a function of time. Steam regeneration of the particles enabled cyclic testing, revealing a CO2 absorption capacity of 6.5 ± 0.5 mol kg−1 solid PEI in pure CO2 environments and 0.7 ± 0.3 mol kg−1 solid PEI for direct air capture. Several thousands of particles were produced per second at a rate of around 0.5 kg per hour, with a single nozzle. This process can be further scaled by parallelization. The complete toolbox for the design, fabrication, testing, and regeneration of functional hydrogel particles provides a powerful route toward novel solid sorbents for regenerative CO2 capture.

Abstract Image

Abstract Image

基于可扩展喷射技术制造用于二氧化碳捕获的聚乙烯醇缩水甘油醚(PEI-Hydrogel)颗粒
从环境空气和烟道气流中捕获、再生和转化二氧化碳是减缓全球变暖的关键环节。用于吸收二氧化碳的固体吸附剂前景非常广阔,因为与液体吸附剂相比,它们具有高传质面积,无需能量输入,还能减少排放和腐蚀。然而,精确可调的固体二氧化碳吸附剂很难生产。在这里,我们展示了通过液体喷射高通量生产水凝胶基二氧化碳吸附颗粒的方法。通过将由可交联支化聚乙烯亚胺(PEI)水溶液组成的液体射流与一层含有疏水性二氧化硅纳米颗粒的悬浮液包裹在一起,在空气中形成了带有二氧化硅纳米颗粒包覆层的单分散液滴。在加热的油浴中收集这些喷出的液滴后,就得到了含有 PEI 液滴的稳定皮克林乳液。这些液滴在油浴中热固化后变成了毫米大小的颗粒。颗粒的直径、PEI 含量和二氧化硅含量被系统地改变,其二氧化碳吸收量随时间变化而测量。颗粒的蒸汽再生实现了循环测试,结果显示,在纯二氧化碳环境中,固体 PEI 的二氧化碳吸收能力为 6.5 ± 0.5 mol kg-1,而在直接空气捕获环境中,固体 PEI 的二氧化碳吸收能力为 0.7 ± 0.3 mol kg-1。使用单个喷嘴,每秒可生产数千个颗粒,速度约为每小时 0.5 千克。这一过程可以通过并行化进一步扩展。功能性水凝胶颗粒的设计、制造、测试和再生的完整工具箱为新型固体吸附剂的再生二氧化碳捕获提供了一条强有力的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信