{"title":"2.5 μm-Thick Ultrastrong Asymmetric Separator for Stable Lithium Metal Batteries","authors":"Donghao Xie, Zekun Wang, Xin Ma, Yuchen Feng, Xiaomin Tang, Qiao Gu, Yonghong Deng, Ping Gao","doi":"10.1002/eem2.12746","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal batteries (LMBs) are considered the ideal choice for high volumetric energy density lithium-ion batteries, but uncontrolled lithium deposition poses a significant challenge to the stability of such devices. In this paper, we introduce a 2.5 μm-thick asymmetric and ultrastrong separator, which can induce tissue-like lithium deposits. The asymmetric separator, denoted by utPE@Cu<sub>2</sub>O, was prepared by selective synthesis of Cu<sub>2</sub>O nanoparticles on one of the outer surfaces of a nanofibrous (diameter ~10 nm) ultrastrong ultrahigh molecular weight polyethylene (UHMWPE) membrane. Microscopic analysis shows that the lithium deposits have tissue-like morphology, resulting in the symmetric lithium cells assembled using utPE@Cu<sub>2</sub>O with symmetric Cu<sub>2</sub>O coating exhibiting stable performance for over 2000 h of cycling. This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries, providing a pathway towards enhanced battery performance and safety.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12746","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12746","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium metal batteries (LMBs) are considered the ideal choice for high volumetric energy density lithium-ion batteries, but uncontrolled lithium deposition poses a significant challenge to the stability of such devices. In this paper, we introduce a 2.5 μm-thick asymmetric and ultrastrong separator, which can induce tissue-like lithium deposits. The asymmetric separator, denoted by utPE@Cu2O, was prepared by selective synthesis of Cu2O nanoparticles on one of the outer surfaces of a nanofibrous (diameter ~10 nm) ultrastrong ultrahigh molecular weight polyethylene (UHMWPE) membrane. Microscopic analysis shows that the lithium deposits have tissue-like morphology, resulting in the symmetric lithium cells assembled using utPE@Cu2O with symmetric Cu2O coating exhibiting stable performance for over 2000 h of cycling. This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries, providing a pathway towards enhanced battery performance and safety.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.