Qingqing Pang, Xizheng Fan, Kaihang Sun, Kun Xiang, Baojun Li, Shufang Zhao, Young Dok Kim, Qiaoyun Liu, Zhongyi Liu, Zhikun Peng
{"title":"Nickel–Nitrogen–Carbon (Ni–N–C) Electrocatalysts Toward CO2 electroreduction to CO: Advances, Optimizations, Challenges, and Prospects","authors":"Qingqing Pang, Xizheng Fan, Kaihang Sun, Kun Xiang, Baojun Li, Shufang Zhao, Young Dok Kim, Qiaoyun Liu, Zhongyi Liu, Zhikun Peng","doi":"10.1002/eem2.12731","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic reduction of CO<sub>2</sub> into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems. Constructing electrocatalyst with high activity, selectivity, stability, and low cost is really matter to realize industrial application of electrocatalytic CO<sub>2</sub> reduction (ECR). Metal–nitrogen–carbon (M–N–C), especially Ni–N–C, display excellent performance, such as nearly 100% CO selectivity, high current density, outstanding tolerance, etc., which is considered to possess broad application prospects. Based on the current research status, starting from the mechanism of ECR and the existence form of Ni active species, the latest research progress of Ni–N–C electrocatalysts in CO<sub>2</sub> electroreduction is systematically summarized. An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni–N–C, including N coordination modulation, vacancy defects construction, morphology design, surface modification, heteroatom activation, and bimetallic cooperation. Finally, some urgent problems and future prospects on designing Ni–N–C catalysts for ECR are discussed. This review aims to provide the guidance for the design and development of Ni–N–C catalysts with practical application.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12731","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12731","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic reduction of CO2 into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems. Constructing electrocatalyst with high activity, selectivity, stability, and low cost is really matter to realize industrial application of electrocatalytic CO2 reduction (ECR). Metal–nitrogen–carbon (M–N–C), especially Ni–N–C, display excellent performance, such as nearly 100% CO selectivity, high current density, outstanding tolerance, etc., which is considered to possess broad application prospects. Based on the current research status, starting from the mechanism of ECR and the existence form of Ni active species, the latest research progress of Ni–N–C electrocatalysts in CO2 electroreduction is systematically summarized. An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni–N–C, including N coordination modulation, vacancy defects construction, morphology design, surface modification, heteroatom activation, and bimetallic cooperation. Finally, some urgent problems and future prospects on designing Ni–N–C catalysts for ECR are discussed. This review aims to provide the guidance for the design and development of Ni–N–C catalysts with practical application.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.